Preview

Problems of Endocrinology

Advanced search

Inflammation of the adipose tissue (Part 4). Obesity: a new infectious disease? (a literature review)

https://doi.org/10.14341/probl201157563-71

Abstract

This review considers the role of adenovirus 36, Chlamydia pneumoniae, Helicobacter pylori, and Trypanosoma cruzi in pathogenesis of obesity. Infection with either of the three microorganisms leads to the development of obesity in animals. The infected people usually have antibodies to these bacteria. One of the causes of obesity is believed to be activation of the receptors of the innate immune system (TLR2 and TLR4) by certain factors of the microorganisms; these receptors are known to localize in the adipose tissue. Saturated fatty acids as well as lipoploysaccharides (components of the microbial cells) are the ligands of TLR2 and TLR4. Activation of TLR2 and TLR4 promotes the development of both inflammation in the adipose tissue and insulin resistance and thereby leads to obesity. The mechanism of action of activated TLR2 and TLR4 during microbial infection consists of the suppression of sensitivity of adipose, hepatic, and muscular cells to insulin in conjunction with the enhancement of the blood glucose and fatty acid levels to produce the energy-rich substrates necessary to maintain the immune processes. The fact that saturated fatty acids and components of microbial cells can function as ligands for the receptors of the innate immune system and induce identical reactions gives evidence of the possible cumulative action of both excessively consumed dietary items and certain species of microorganisms.

About the Author

V Ia Shvarts



References

1. Шварц В. Жировая ткань как эндокринный орган. Пробл эндокринол 2009; 55: 1: 38-44.

2. Flegal K.M., Carroll M.D., Ogden C.L., Johnson C.L. Prevalence and trends in obesity among US adults, 1999-2000. JAMA 2002; 288: 14: 1723-1727.

3. World Health Organization. Obesity: preventing and managing a global epidemic: report of a WHO consultation on obesity. World Health Organ Tech Rep Ser 2000; 894: i-xii: 1-253.

4. Hedley A.A., Ogden C.L., Johnson C.L. et al. Prevalence of overweight and obesity among US children, adolescents, and adults, 1999-2002. JAMA 2004; 291: 23: 2847-2850.

5. Atkinson R.L. Could viruses contribute to the worldwide epidemic of obesity? Int J Pediat Obes 2008; 3: Suppl 1: 37-43.

6. Backhed F., Manchester J.K., Semenkovich C.F., Gordon J.I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA 2007; 104: 979-984.

7. Lyons M.J., Faust I.M., Hemmes R.B. et al. A virally induced obesity syndrome in mice. Science 1982; 216: 4541: 82-85.

8. Griffond B., Verlaeten O., Belin M.F., Risold P.Y., Bernard A. Specific alteration of the expression of selected hypothalamic neuropeptides during acute and late mouse brain infection using a morbillivirus: relevance to the late-onset obesity? Brain Res 2004; 1022: 1-2: 173-181.

9. Dhurandhar N.V., Israel B.A., Kolesar J.M. et al. Increased adiposity in animals due to a human virus. Int J Obes Relat Metab Dis 2000; 24: 8: 989-996.

10. Pasarica M., Shin A.C., Yu M. et al. Human adenovirus 36 induces adiposity, increases insulin sensitivity, and alters hypothalamic monoamines in rats. Obesity (Silver Spring) 2006; 14: 11: 1905-1913.

11. So P.W., Herlihy A.H., Bell J.D. Adiposity induced by adenovirus 5 inoculation. Int J Obes (Lond.) 2005; 29: 6: 603-606.

12. Whigham L.D., Israel B.A., Atkinson R.L. Adipogenic potential of multiple human adenoviruses in vivo and in vitro in animals. Am J Physiol Regul Int Comp Physiol 2006; 290: 1: R190-R194.

13. Atkinson R.L., Dhurandhar N.V., Allison D.B. et al. Human adenovirus-36 is associated with increased body weight and paradoxical reduction of serum lipids. Int J Obes (Lond.) 2005; 29: 3: 281-286.

14. Dhurandhar N.V., Israel B.A., Kolesar J.M. et al. Transmissibility of adenovirus-induced adiposity in a chicken model. Int J Obes Relat Metab Dis 2001; 25: 7: 990-996.

15. Pasarica M., Loiler S., Dhurandhar N.V. Acute effect of infection by adipogenic human adenovirus Ad36. Arch Virol 2008; 153: 2097-2102.

16. Vangipuram S.D., Yu M., Tian J. et al. Adipogenic human adenovirus-36 reduces leptin expression and secretion and increases glucose uptake by fat cells. Int J Obes (Lond.) 2007; 31: 1: 87-96.

17. Rathod M., Vangipuram S.D., Krishnan B. et al. Viral mRNA expression but not DNA replication is required for lipogenic effect of human adenovirus Ad-36 in preadipocytes. Int J Obes (Lond.) 2007; 31: 1: 78-86.

18. Rogers P.M., Fusinski K.A., Rathod M.A. et al. Human adenovirus Ad-36 induces adipogenesis via its E4 orf-1 gene. Int J Obes (Lond.) 2008; 32: 397-406.

19. Nabipour I., Vahdat K., Jafari S.M. et al. The association of metabolic syndrome and Сhlamydia pneumoniae, Helicobacter pylori, Cytomegalovirus, and herpes simplex virus type 1: The Persian Gulf Healthy Study. Cardiovasc Diabetol 2006; 5: 25-39.

20. Thjodleifsson B., Olafsson I., Gislason D. et al. Infections and obesity: A multinational epidemiological study. Scand J Inf 2008; 40: 381-386.

21. Lajunen T., Vikatmaa P., Bloigu A. et al. Chlamydial LPS and high-sensitivity CRP levels in serum are associated with an elevated body mass index in patients with cardiovascular disease. Inn Immun 2008; 14: 6: 375-382.

22. dos Santos V.M., da Cunha S.F., Teixeira V. de P. et al. Frequency of diabetes mellitus and hyperglycemia in chagasic and non-chagasic women. Rev Soc Bras Med Trop 1999; 32: 489-496.

23. Guariento M.E., Saad M.J., Muscelli E.O., Gontijo J.O. Heterogenous insulin response to an oral glucose load by patients with the indeterminate clinical form of Chagas' disease. Braz J Med Biol Res 1993; 26: 491-495.

24. Desruisseaux M.S., Nagajyothi R., Trujillo M.E. et al. Adipocyte, Adipose Tissue, and Infectious Disease. Infect Immun 2007; 75: 1066-1078.

25. Combs T.P., Nagajyothi, Mukherjee S. et al. The adipocyte as an important target cell for Trypanosoma cruzi infection. J Biol Chem 2005; 280: 24085-24094.

26. Batra A., Pietsch J., Fedke I. et al. Leptin-dependent Toll-like receptor expression and responsiveness in preadipocytes and adipocytes. Am J Pathol 2007; 170: 6: 1931-1941.

27. Ghanim H., Mohanty P., Deopurkar R. et al. Acute modulation of toll-like receptors by insulin. Diabet Care 2008; 31: 1827-1831.

28. Vitseva O.I., Tanriverdi K., Tchkonia T.T. et al. Inducible Toll-like receptor and NF-kappaB regulatory pathway expression in human adipose tissue. Obesity (Silver Spring) 2008; 16: 5: 932-937.

29. Brikos C., O'Neill L.A. Signaling of toll-like receptors. Handb Exp Pharmacol 2008; 183: 21-50.

30. Suganami T., Tanimoto-Koyama K., Nishida J. et al. Role of the Toll-like receptor 4/NF-kappaB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages. Arterioscler Thromb Vasc Biol 2007; 27: 84-91.

31. Bès-Houtmann S., Roche R., Hoareau L. et al. Presence of functional TLR2 and TLR4 on human adipocytes. Histochem Cell Biol 2007; 127: 2: 131-137.

32. Chen J.X., Stinnett A. Critical role of the NADPH oxidase subunit p47phox on vascular TLR expression and neointimal lesion formation in high-fat diet-induced obesity. Lab Inv 2008; 88: 12: 1316-1328.

33. Nguyen M.T. et al. A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by FFAS via TLR2, TLR4 and JNK-dependent pathways. J Biol Chem 2007; 282: 35279-35292.

34. Shi H., Kokoeva M.V., Inouye K. et al. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 2006; 116: 11: 3015-3025.

35. Creely S.J., McTernan P.G., Kusminski C.M. et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab 2007; 292: 3: E740-E747.

36. Yu S., Cho H.H., Joo H.J. et al. Role of MyD88 in TLR agonist-induced functional alterations of human adipose tissue-derived mesenchymal stem cells. Mol Cell Biochem 2008; 317: 1-2: 143-150.

37. Tsukumo D.M., Carvalho-Filho M.A., Carvalheira J.B. et al. Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes 2007; 56: 8: 1986-1998.

38. Roncon-Albuquerque R., Moreira-Rodrigues M., Faria B. et al. Attenuation of the cardiovascular and metabolic complications of obesity in CD14 knockout mice. Life Sci 2008; 83: 13-14: 502-510.

39. Dela P.A., Leclercq I., Field J., George J., Jones B., Farrel G. NF-kappaB activation, rather than TNF, mediates hepatic inflammation in a murine dietary model of steatohepatitis. Gastroentero­logy 2005; 129: 5: 1663-1674.

40. Cai Dongsheng, Yuan Minsheng, Frantz Daniel F. et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-Β and NF-χB. Nature Med 2006; 11: 2: 183-190.

41. Li Z., Yang S., Lin H., Huang J., Watkins P.A., Moser A.B. et al. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatol 2003; 37: 2: 343-350.

42. Kim F., Pham M., Luttrell I. et al. Toll like receptor-4 mediates vascular inflammation and insulin resistance in diet-induced obesity. Circulat Res 2007; 100: 1589-1596.

43. Coenen K.R., Gruen M.L., Lee-Young R.S. et al. Impact of macrophage toll-like receptor 4 deficiency on macrophage infiltration into adipose tissue and the artery wall in mice. Diabetologia 2009; 52: 318-328.

44. Cani P.D., Amar J., Iglesias M.A. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007; 56: 1761-1772.

45. Erridge С., Attina T., Spickett C.M., Webb D.J. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr 2007; 86: 1286-1292.

46. Wiedermann C.I., Kiechl S., Dunzendorfer S. et al. Association of endotoxemia with carotid atherosclerosis and cardiovascular disease: prospective results from the Bruneck Study. J Am Coll Cardiol 1999; 34: 1975-1981.

47. Nolan J.P., Hare D.K., McDevitt J.J., Ali M.V. In vitro studies of intestinal endotoxin absorption. I. Kinetics of absorption in the isolated everted gut sac. Gastroenterology 1977; 72: 434-439.

48. Rao R.K., Seth A., Sheth P. Recent advances in alcoholic liver disease I. Role of intestinal permeability and endotoxemia in alcoholic liver disease. Am J Physiol Gastrointest Liver Physiol 2004; 286: 881-884.

49. Wolowczuk I., Verwaerde C., Viltart O. et al. Feeding Our Immune System: Impact on Metabolism. Clin Dev Immunol 2008; 2008: 639-803.

50. Neels J.G., Olefsky J.M., Desai M. et al. Inflamed Fat: what starts the fire? J Clin Invest 2006; 116: 33-35.

51. Lee J.Y., Hwang D.H. The modulation of inflammatory gene expression by lipids: mediation through Toll-like receptors. Mol Cells 2006; 21: 2: 174-185.

52. Schaeffler A., Gross P., Buettner R. et al. Fatty acid-induced induction of Toll-like receptor-4/nuclear factor-kappaB pathway in adipocytes links nutritional signalling with innate immunity. Immunology 2009; 126: 233-245.

53. Davis J.E., Gabler N.K., Walker-Daniels J., Spurlock M.E. Tlr-4 deficiency selectively protects against obesity induced by diets high in saturated fat. Obesity (Silver Spring) 2008; 16: 6: 1248-1255.

54. Funk C.D. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 2001; 294: 5548: 1871-1875.

55. Pond C.M. Paracrine relationships between adipose and lymphoid tissues: implications for the mechanism of HIV-associated adipose redistribution syndrome. Tr Immun 2003; 24: 13-18.

56. Schаеffler A., Schоеlmerich J., Buechler C. Mechanisms of disease: adipocytokines and visceral adipose tissue-emerging role in intestinal and mesenteric diseases. Nature Clin Pract Gastroenterol Hepatol 2005; 2: 2: 103-111.

57. Magee T., Pirinen N., Adler J., Pagakis S.N., Parmryd I. Lipid rafts: cell surface platforms for T cell signaling. Biolog Res 2002; 35: 2: 127-131.

58. Mattacks C.A., Sadler D., Pond C.M. The effects of dietary lipids on dendritic cells in perinodal adipose tissue during chronic mild infammation. Br J Nutr 2004; 91: 883-892.

59. Ciofani M., Zuniga-Pflucker J.C. Notch promotes survival of pre-T cells at the b-selection checkpoint by regulating cellular metabolism. Nat Immunol 2005; 6: 881-888.

60. Maratou E., Dimitriadis G., Kollias A. et al. Glicose transporter expression on the plasma membrane of resting and activated white blood cells. Eur J Clin Inv 2007; 37: 282-290


Review

For citations:


Shvarts V.I. Inflammation of the adipose tissue (Part 4). Obesity: a new infectious disease? (a literature review). Problems of Endocrinology. 2011;57(5):63-71. https://doi.org/10.14341/probl201157563-71

Views: 774


ISSN 0375-9660 (Print)
ISSN 2308-1430 (Online)