Preview

Problems of Endocrinology

Advanced search

Regulation of the adenilate cyclase signal system by peptides of the insulin family, epidermal growth factor, and leptin and its functional disturbances in lymphocytes from patients presenting with type 2 diabetes mellitus

https://doi.org/10.14341/probl201157432-36

Abstract

This study showed for the first time the stimulating action of peptides of the insulin family, insulin-like growth factor-1, relaxin, and epidermal growth factor (EGF) on the activity of the adenilate cyclase signal system (ACSS) in lymphocytes from the subjects of the control group. These hormonal effects were enhanced in the presence of guanylimidodiphosphate (GIDP). Moreover, leptin was for the first time shown to increase adenilate cyclase activity in lymphocytes from the control subjects and inhibition of this action by antibodies against leptin receptors. The patients presenting with type 2 diabetes mellitus (DM2) showed the enhanced baseline activity of adenilate cyclase in their lymphocytes whereas its stimulation by the above hormones, both in the presence and absence of GIDP, sharply declined. The influence of leptin on adenilate cyclase activity in patients with DM2 was apparent only at its concentrations above 10–8 M; it was inhibited by antibodies to leptin receptors. The results of this study indicate that disturbances of hormonal stimulation of adenilate cyclase activity in lymphocites of diabetic patients may be due to functional defects located at the receptor level in the case of leptin and at the level of Gs protein and its coupling to adenulate cyclase in case of peptides of the insulin family and GF. These findings confirm the concept being developed by the author according to which molecular defects in the hormone-dependent ACSS system constitute one of the main causes underlying the development of DM2.

References

1. Rajpathak S.N., Gunter M.J., Wylie-Rosett J. et al. The role of insulin-like growth factor-I and its binding proteins in glucose homeostasis and type 2 diabetes. Diabetes Metab Res Rev 2009; 25: 3-12.

2. Sherwood O.D. Relaxin's physiological roles and other diverse actions. Endocrine Reviews 2004; 25: 205-234.

3. Chaturvedi D., Edwin F., Sun H., Patel T.B. Analysis of EGF receptor interactions with alpha subunit of the stimulatory GTP binding protein of adenylyl cyclase, Gs. Methods Mol Biol 2006; 327: 49-59.

4. Villanueva E.C., Myers M.G. Leptin receptor signaling and the regulation of mammalian physiology. Int J Obes 2008; 32: 8-12.

5. Pertseva M.N., Shpakov A.O., Plesneva S.A., Kuznetsova L.A. A novel view on the mechanism of action of insulin and other insulin superfamily peptides: involvement of adenylyl cyclase signaling system. Comp Biochem Physiol 2003; 134: 11-34.

6. Pertseva M.N., Shpakov A.O., Kuznetsova L.A. et al. Adenylyl cyclase signaling mechanisms of relaxin and insulin action: similarities and differences. Cell Biol Internat 2006; 30: 533-540.

7. Illiano G., Naviglio S., Pagano M. et al. Leptin affects adenylate cyclase activity in H9c2 cardiac cell line: effects of short- and long-term exposure. Am J Hypertens 2002; 15: 638-643.

8. Плеснева С.А., Кузнецова Л.А., Шпаков А.О. и др. Изучение структурно-функциональной организации аденилатциклазного сигнального механизма действия инсулиноподобного фактора роста 1, обнаруженного в мышечной ткани представителей позвоночных и беспозвоночных. Журн эвол биохим и физиол 2008; 44: 459-466.

9. Перцева М.Н. Гипотеза о ключевой координирующей роли аденилатциклазного сигнального механизма и цАМФ в регуляторном действии пептидов инсулинового суперсемейства на фундаментальные клеточные процессы: клеточный рост, апоптоз, метаболизм. Журн эвол биохим и физиол 2000; 36: 494-503.

10. Шпаков А.О., Кузнецова Л.А., Плеснева С.А. и др. Идентификация нарушений в гормоночувствительной аденилатциклазной сигнальной системе в тканях крыс с диабетом 1 и 2 типов, используя функциональные тесты и синтетические нанопептиды. Технологии живых систем 2007; 4: 96-108.

11. Перцева М.Н., Шпаков А.О. Концепция молекулярных дефектов в гормональных сигнальных системах как причин эндокринных заболеваний. Рос физиол журн им. И.М. Сеченова 2004; 90: 446.

12. Deedwania P. Hypertension, dyslipidemia, and insulin resistance in patients with diabetes mellitus or the cardiometabolic syndrome: benefits of vasodilating β-blockers. J Clin Hypertens (Greenwich) 2011; 13: 52-59.

13. Плеснева С.А., Кузнецова Л.А., Шпаков А.О. и др. Аденилатциклазные сигнальные механизмы действия пептидов инсулинового семейства и их функциональные нарушения в миометрии беременных женщин при сахарном диабете второго типа. Рос физиол журн им. И.М. Сеченова 2008; 94: 1126-1136.

14. Перцева М.Н., Шпаков А.О. Гипотеза эволюционного происхождения ряда болезней человека и животных. Журн эвол биохим и физиол 2010; 46: 261-267.

15. Berstein L.M., Pravosudov I.V., Kryukova O.G. Hormonal regulation of adenylate cyclase activity in circulating lymphocytes and its interrelationship with hormone sensitivity of tumor tissue in colorectal cancer patients. Neoplasma 1995; 42: 57-61.

16. Marcil J., Anand-Srivastava M.B. Lymphocytes from spontaneously hypertensive rats exhibit enhanced adenylyl cyclase-Gi protein signaling. Cardiovasc Res 2001; 49: 234-243.

17. Kawabe J., Aizawa Y., Takehara N. et al. Glucose modifies the cross-talk between insulin and the beta-adrenergic signaling system in vascular smooth muscle cells. J Hypertens 2000; 18: 1457-1464.


Review

For citations:


Kuznetsova L.A., Plesneva S.A., Chistiakova O.V., Sharova T.S., Pertseva M.N. Regulation of the adenilate cyclase signal system by peptides of the insulin family, epidermal growth factor, and leptin and its functional disturbances in lymphocytes from patients presenting with type 2 diabetes mellitus. Problems of Endocrinology. 2011;57(4):32-36. https://doi.org/10.14341/probl201157432-36

Views: 574


ISSN 0375-9660 (Print)
ISSN 2308-1430 (Online)