Preview

Преимущества применения гликлазида МВ у пациентов с сахарным диабетом 2-го типа

https://doi.org/10.14341/probl201258258-61

Аннотация

Сахарный диабет 2-го типа (СД2) - хроническое заболевание, характеризующееся прогрессирующей гипергликемией вследствие дисфункции Β-клеток и снижения секреции инсулина. Поддержание целевых показателей гликемии способствует не только сохранению пула Β-клеток, но и снижению риска сосудистых осложнений. Представлены результаты сравнения эффектов производных сульфонилмочевины у пациентов с СД2.

Об авторе

E Pekareva



Список литературы

1. Reaven G.M. Role of insulin resistance in human disease. Diabetes 1988; 37: 1595-1607.

2. Kahn S.E. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia 2003; 46: 3-19.

3. De Fronzo R.A. Pathogenesis of type 2 diabetes: metabolic and molecular implications for identifying diabetes genes. Diabet Rev 1997; 5: 177-269.

4. Weyer C., Bogardus C., Mott D.M., Pratley R.E. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest 1999; 104: 787-794.

5. Tusie Luna M.T. Genes and type 2 diabetes mellitus. Arch Med Res 2005; 36: 210-222.

6. Krauss S., Zhang C.Y., Scorrano L., Dalgaard L.T., St-Pierre J., Grey S.T., Lowell B.B. Superoxide-mediated activation of uncoupling protein 2 causes pancreatic beta cell dysfunction. J Clin Invest 2003; 112: 1831-1842.

7. Ritzel R.A., Hansen J.B., Veldhuis J.D., Butler P.C. Induction of beta-cell rest by a Kir6.2/SUR1-selective K (ATP)-channel opener preserves beta-cell insulin stores and insulin secretion in human islets cultured at high (11 mM) glucose. J Clin Endocrinol Metab 2004; 89: 795-805.

8. Tomás E., Lin Y.S., Dagher Z., Saha A., Luo Z., Ido Y., Ruderman N.B. Hyperglycemia and insulin resistance: possible mechanisms. Ann N Y Acad Sci 2002; 967: 43-51.

9. Butler A.E., Janson J., Bonner-Weir S., Ritzel R., Rizza R.A., Butler P.C. Β-Cell deficit and increased Β-cell apoptosis in humans with type 2 diabetes. Diabetes 2003; 52: 102-110.

10. Kahn S.E., Zraika S., Utzschneider K.M., Hull R.L. The beta cell lesion in type 2 diabetes: there has to be a primary functional abnormality. Diabetologia 2009; 52: 1003-1012.

11. Ritzel R.A., Butler A.E., Rizza R.A., Veldhuis J.D., Butler P.C. Relationship between Β-cell mass and fasting blood glucose concentration in humans. Diabetes Care 2006; 29: 717-718.

12. Owens D.R., Cozma L.S., Luzio S.D. Early-phase prandial insulin secretion: its role in the pathogenesis of type 2 diabetes mellitus and its modulation by repaglinide. Diabet Nutr Metab 2002; 15: 19-27.

13. Wu C.Z., Pei D., Hsieh A.T., Wang K., Lin J.D., Lee L.H., Chu Y.M., Hsiao F.C., Pei C., Hsia T.L. Comparison of insulin sensitivity, glucose sensitivity, and first phase insulin secretion in patients treated with repaglinide or gliclazide. Arch Pharm Res 2010; 33: 411-416.

14. Zhang H., Bu P., Xie Y.H., Luo J., Lei M.X., Mo Z.H., Liao E.Y. Effect of repaglinide and gliclazide on glycaemic control, early-phase insulin secretion and lipid profiles in newly diagnosed type 2 diabetics. Chin Med J 2011; 124: 172-176.

15. Leahy J.L., Bonner-Weir S., Weir G.C. Beta-cell dysfunction induced by chronic hyperglycemia. Current ideas on mechanism of impaired glucose-induced insulin secretion. Diabetes Care 1992; 15: 442-455.

16. Robertson R.P. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J Biol Chem 2004; 279: 42351-42354.

17. Federici M., Hribal M., Perego L., Ranalli M., Caradonna Z., Perego C., Usellini L., Nano R., Bonini P., Bertuzzi F., Marlier L.N., Davalli A.M., Carandente O., Pontiroli A.E., Melino G., Marchetti P., Lauro R., Sesti G., Folli F. High glucose causes apoptosis in cultured human pancreatic islets of Langerhans. Diabetes 2001; 50: 1290-1301.

18. Efanova I.B., Zaitsev S.V., Zhivotovsky B., Köhler M., Efendić S., Orrenius S., Berggren P.O. Glucose and tolbutamide induce apoptosis in pancreatic Β-cells. J Biol Chem 1998; 273: 33501-33507.

19. Iwakura T., Fujimoto S., Kagimoto S., Inada A., Kubota A., Someya Y., Ihara Y., Yamada Y., Seino Y. Sustained enhancement of Ca2+ influx by glibenclamide induces apoptosis in RINm5F cells. Biochem Biophys Res Commun 2000; 271: 422-428.

20. Del Guerra S., Marselli L., Lupi R., Boggi U., Mosca F., Benzi L., Del Prato S., Marchetti P. Effects of prolonged in vitro exposure to sulphonylureas on the function and survival of human islets. J Diabet Compl 2005; 19: 60-64.

21. Maedler K., Carr R.D., Bosco D., Zuellig R.A., Berney T., Donath M.Y. Sulfonylurea induced Β-cell apoptosis in cultured human islets. J Clin Endocrinol Metab 2005; 90: 501-506.

22. Del Guerra S., Grupillo M., Masini M., Lupi R., Bugliani M., Torri S., Boggi U., Del Chiaro M., Vistoli F., Mosca F., Del Prato S., Marchetti P. Gliclazide protects human islet Β-cells from apoptosis induced by intermittent high glucose. Diabet Metab Res Rev 2007; 23: 234-238.

23. Kimoto K., Suzuki K., Kizaki T., Hitomi Y., Ishida H., Katsuta H., Itoh E., Ookawara T., Suzuki K., Honke K., Ohno H. Gliclazide protects pancreatic Β-cells from damage by hydrogen peroxide. Biochem Biophys Res Commun 2003; 303: 112-119.

24. Sawada F., Inoguchi T., Tsubouchi H., Sasaki S., Fujii M., Maeda Y., Morinaga H., Nomura M., Kobayashi K., Takayanagi R. Differential effect of sulfonylureas on production of reactive oxygen species and apoptosis in cultured pancreatic Β-cell line, MIN6. Metab Clin Exp 2008; 57: 1038-1045.

25. O'Brien R.C., Luo M., Balazs N., Mercuri J. In vitro and in vivo antioxidant properties of gliclazide. J Diabet Compl 2000; 14: 201-206.

26. Scott N.A., Jennings P.E., Brown J., Belch J.J. Gliclazide: a general free radical scavenger. Eur J Pharmacol 1991; 208: 175-177.

27. Gier B. Suppression of KATP channel activity protects murine pancreatic Β-cells against oxidative stress. J Clin Invest 2009; 119: 3246-3256.

28. Chen L.L., Yu F., Zeng T.S., Liao Y.F., Li Y.M., Ding H.C. Effects of gliclazide on endothelial function in patients with newly diagnosed type 2 diabetes. Eur J Pharmacol 2011; 659: 296-301.

29. Drzewoski J., Zurawska-Klis M. Effect of gliclazide modified release on adiponectin, interleukin-6, and tumor necrosis factor-alpha plasma levels in individuals with type 2 diabetes mellitus. Curr Med Res Opin 2006; 22: 1921-1926.

30. Аметов А.С., Соловьева О.Л. Сердечно-сосудистые осложнения при сахарном диабете: патогенез и пути коррекции. РМЖ 2011; 27: 1694-1699.

31. Смирнова О.М., Кононенко И.В. Диабетон МВ в лечении сахарного диабета 2-го типа и профилактике его поздних осложнений. Фарматека 2011; 16: 30-36.

32. Avogaro A. Treating diabetes today with gliclazide MR: a matter of numbers. Diabet Obes Metab 2012; 14: Suppl 1: 14-19.

33. Jennings P.E. Vascular benefits of gliclazide beyond glycemic control. Metabolism 2000; 49: 17-20.


Для цитирования:


. Преимущества применения гликлазида МВ у пациентов с сахарным диабетом 2-го типа. Проблемы Эндокринологии. 2012;58(2):58-61. https://doi.org/10.14341/probl201258258-61

For citation:


Pekareva E.V. The advantages of the treatment of the patients with type 2 diabetes mellitus with gliclazide MR. Problems of Endocrinology. 2012;58(2):58-61. (In Russ.) https://doi.org/10.14341/probl201258258-61

Просмотров: 13


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0375-9660 (Print)
ISSN 2308-1430 (Online)