Окислительный стресс при сахарном диабете 2-го типа и пути его коррекции
https://doi.org/10.14341/probl201157652-56
Аннотация
Ключевые слова
Список литературы
1. IDF Diabetes Atlas,4th Edition.
2. Tappia P.S., Dent M.R., Dhalla N.S. Oxidative stress and redox regulation of phospholipase D in myocardial disease. Free Radic Biol Med 2006; 41: 349-361.
3. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414: 813-820.
4. Prentki M., Nolan C.J. Islet β cell failure in type 2 diabetes. J Clin Inv 2006; 116: 7: 1802-1812.
5. Poitout V., Robertson R.P. Minireview: secondary β-cell failure in type 2 diabetes - a convergence of glucotoxicity and lipotoxicity. Endocrinology 2002; 143: 2: 339-342.
6. Балаболкин М.И., Клебанова Е.М., Креминская В.М. Лечение сахарного диабета и его осложнений (руководство для врачей). М: Медицина 2005.
7. Lee A.Y., Chung S.S. Contributions of polyol pathway to oxidative stress in diabetic cataract. FASEB J 1999; 13: 23-30.
8. Ramana K.V., Friedrich B., Tammali R., West M.B., Bhatnagar A., Srivastava S.K. Requirement of aldose reductase for the hyperglycemic activation of protein kinase C and formation of diacylglycerol in vascular smooth muscle cells. Diabetes 2005; 54: 818-829.
9. Hi Bahl Lee, Hunjoo Ha, George L. King Reactive Oxygen Species and Diabetic Nephropathy. J Am Soc Nephrol 2003; 14: S209-S210.
10. Kislinger T., Fu C., Huber B. et al. N(epsilon)-(carboxymethyl) lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression. J Biol Chem 1999; 274: 31740-31749.
11. NADH oxidoreductase is a major source of superoxide anion in bovine coronary artery endothelium. Am J Physiol 1994; 266: H2568-H2572.
12. Ramachandran A., Levonen A.L., Brookes P.S. et al. Mitochondria, nitric oxide, and cardiovascular dysfunction. Free Radic Biol Med 2002; 33: 1465-1474.
13. Brand M.D., Affourtit C., Esteves T.C. et al. Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med 2004; 37: 755-767.
14. Kashiwagi A., Asahina T., Nishio Y. et al. Glycation, oxidative stress, and scavenger activity. Glucose metabolism and radical scavenger dysfunction in endothelial cells. Diabetes 1996; 45: S84-S86.
15. Cosentino F., Luscher T.F. Endothelial dysfunction in diabetes mellitus. Cardiovascular Pharmacol 1998; 32: 54-61.
16. Lusher T., Barton M. Biology of the endothelium. Clin Cardiol 1997; 330: 1081-1083.
17. Radomski M., Moncada S. Regulation of vascular homeostasis by nitric oxid. Tromb Haemost 1993; 70: 36-41.
18. Gimbrone M.A., Nagel T., Topper J.N. Biomechanical activation: an emergin paradigm in endothelial adhesion biology. J Clin Invest 1997; 99: 1809-1813.
19. Garcia Soriano F., Virag L. Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation. Nat Med 2001; 7: 108-113.
20. Vasquez-Vivar J., Kalyanaraman B., Martasek P. et al. Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci USA 1998; 95: 9220-9225.
21. Pieper G.M. Acute amelioration of diabetic endothelial dysfunction with a derivative of the nitric oxide synthase cofactor, tetrahydrobiopterin. J Cardiovasc Pharmacol 1997; 29: 8-15.
22. Alp N.J., Mussa S., Khoo J. et al. Tetrahydrobiopterin-dependent preservation of nitric oxide-mediated endothelial function in diabetes by targeted transgenic GTP-cyclohydrolase I over-expression. J Clin Inv 2003; 112: 725-735.
23. Madamanchi N.R., Vendrov A., Runge M.S. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 2005; 25: 1: 29-38.
24. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414: 6865: 813-820.
25. Rao G.N., Berk B.C. Active oxygen species stimulate vascular smooth muscle cell growth and proto-oncogene expression. Circulat Res 1992; 70: 593-599.
26. Rao G.N., Lasségue B., Griendling K.K., Alexander R.W. Hydrogen peroxide stimulates transcription of c-jun in vascular smooth muscle cells: role of arachidonic acid. Oncogene 1993; 8: 2759-2764.
27. Rao G.N., Lasségue B., Griendling K.K., Alexander R.W., Berk B.C. Hydrogen peroxide-induced c-fos expression is mediated by arachidonic acid release: role of protein kinase C. Nucl Acids Res 1993; 21: 1259-1263.
28. Lenzen S., Drinkgern J., Tiedge M. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radiol Biol Med 1996; 20: 3: 463-466.
29. Tiedge M., Lortz S., Drinkgern J., Lenzen S. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 1997; 46: 11: 1733-1742.
30. Tonooka N., Oseid E., Harmon J., Zhou H., Zhang T., Robertson R.P. Glutathione peroxidase protein expression and activity in human islets isolated for transplantation. Clin Transplant 2007; 21: 767-772.
31. Hiroki Takahashi, LeRoy E. Glyceraldehyde Causes Production of Intracellular Peroxide in Pancreatic Islets, Oxidative Stress, and Defective Beta Cell Function via Non-mitochondrial Pathways. J Biol Chem 2004; 279: 37316-37324.
32. Pi J., Bai Y., Zhang Q. Reactive oxygen species as a signal in glucose-stimulated insulin secretion. Diabetes 2007; 56: 1783-1791.
33. Robertson R.R., Zhang H.J. Preservation of insulin mRNA levels and insulin secretion in HIT cells by avoidance of chronic exposure to high glucose concentrations. J Clini Invest 1996; 97: 1041-1046.
34. Kataoka K., Han S.-I., Shioda S. MafA Is a Glucose-regulated and Pancreatic beta-Cell-specific Transcriptional Activator for the Insulin Gene. J Biol Chem 2002; 277: 49903-49910.
35. Olbrot M., Rud J., Moss L.G., Sharma A. Identification of beta-cell-specific insulin gene transcription factor RIPE3b1 as mammalian MafA. Proc Natl Acad Sci 2002; 99: 6737-6742.
36. Tanaka Y., Gleason C.E., Tran P.O.T., Harmon J.S., Robertson R.P. Prevention of glucose toxicity in HIT-T15 cells and Zucker diabetic fatty rats by antioxidants. Proceedings of the National Academy the United States of America. Science 1999; 96: 10857-10862.
37. Kaneto H., Kajimoto Y., Miyagawa J. et al. Beneficial effects of antioxidants in diabetes: possible protection of pancreatic β-cells against glucose toxicity. Diabetes 1999; 48: 12: 2398-2406.
38. Kaneto H., Miyatsuka T., Kawamori D. et al. PDX-1 and MafA play a crucial role in pancreatic β-cell differentiation and maintenance of mature β-cell function. Endocrine J 2008; 55: 235-252.
39. Kimoto K., Suzuki K. Gliclazide protects pancreatic β-Сells frome damage by hydrogen peroxide. Biohem Biophis Res Commun 2003; 303: 112-119.
40. Scott N.A., Jennings P.E., Brown G. Gliclazide: a free radical scavenger. Eur J Pharmacol 1991; 208: 175-177.
41. Jennings P.E. Free radical scavenging ability that is related to the unique amino azabicyclo-octane ring, in a glibenclamide-controlled study over a 6-month period. Metabolism 2000; 49: Suppl 1: 23-26.
42. Brein R.C. In vitro and in vivo antioxudant properties of glyclazide. J Diabetes Comp 2000; 14: 201-206.
43. Desfait A.C. et al. Normalization of plasma lipid peroxides, monocyte adhesion and TNF-α production in NIDDM patients after gliclazide treatment. Diabetes Care 1998; 21: 487-493.
44. Van der Meer, Bots M.L., Hofman A. et al. The Rotterdam study. Circulation 2004; 109:1089-1094.
45. Katakami N. et al. Metformin or glyclazide, rather than glibenclamide, attenuate progression of carotid intima-media thichness in subjects with type 2 diabetes. Diabetologia 2004; 47: 1906-1913.
Рецензия
Для цитирования:
, Окислительный стресс при сахарном диабете 2-го типа и пути его коррекции. Проблемы Эндокринологии. 2011;57(6):52-56. https://doi.org/10.14341/probl201157652-56
For citation:
Ametov A.S., Solov'eva O.L. Oxidative stress in type 2 diabetes mellitus and methods for its correction. Problems of Endocrinology. 2011;57(6):52-56. https://doi.org/10.14341/probl201157652-56

Контент доступен под лицензией Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).