Preview

Матриксные металлопротеиназы и их ингибиторы в развитии фиброза почек при сахарном диабете

https://doi.org/10.14341/probl201258139-44

Аннотация

Накопление компонентов внеклеточного матрикса в клубочках и интерстиции почек является характерной особенностью диабетической нефропатии. Основную роль в катаболизме внеклеточного матрикса играют матриксные металлопротеиназы (ММП). Активность этих ферментов регулируется группой ингибиторов, включающей тканевые ингибиторы металлопротеиназ, ингибитор активатора плазминогена-1 и другие. Исследования in vitro и in vivo показали, что снижение активности ММП и/или повышение экспрессии тканевых ингибиторов ММП в клубочковых и канальцевых клетках приводит к подавлению катаболизма компонентов внеклеточного матрикса в условиях гипергликемии. Циркулирующие и экскретируемые с мочой ММП и их ингибиторы изучаются как новые потенциальные маркеры фиброза почек при диабете. Направленная активация ММП и нейтрализация их ингибиторов может быть перспективным подходом к лечению диабетической нефропатии.

Об авторах

I Bondar'



V Klimontov



Список литературы

1. Шестакова М.В., Дедов И.И. Сахарный диабет и хроническая болезнь почек. М: МИА 2009.

2. Бондарь И.А., Климонтов В.В. Изменения обмена коллагена при диабетической нефропатии. Пробл эндокринол 2005; 2: 23-28.

3. Forbes J.M., Fukami K., Cooper M.E. Diabetic nephropathy: where hemodynamics meets metabolism. Exp Clin Endocrinol Diabet 2007; 115: 2: 69-84.

4. Соловьева Н.И. Матриксные металлопротеиназы и их биологические функции. Журн биоорган химии 1998; 24: 217-226.

5. Бобкова И.Н., Козловская Л.В., Ли О.А. Роль матриксных металлопротеиназ в патогенезе заболеваний почек. Тер арх 2008; 6: 86-90.

6. Catania J.M., Chen G., Parrish A.R. Role of matrix metalloproteinases in renal pathophysiologies. Am J Physiol Renal Physiol 2007; 292: 3: F905-F911.

7. Ohtomo S., Nangaku M., Izuhara Y. et al. The role of megsin, a serine protease inhibitor, in diabetic mesangial matrix accumulation. Kidney Int 2008; 74: 6: 768-774.

8. Lenz O., Elliot S.J., Stetler-Stevenson W.G. Matrix metalloproteinases in renal development and disease. J Am Soc Nephrol 2000; 11: 3: 574-581.

9. Tveita A., Rekvig O.P., Zykova S.N. Glomerular matrix metalloproteinases and their regulators in the pathogenesis of lupus nephritis. Arthritis Res Ther 2008; 10: 6: 229.

10. Keeling J., Herrera G.A. Human matrix metalloproteinases: characteristics and pathologic role in altering mesangial homeostasis. Microsoc Res Tech 2008; 71: 5: 371-379.

11. Thrailkill K.M., Clay Bunn R., Fowlkes J.L. Matrix metalloproteinases: their potential role in the pathogenesis of diabetic nephropathy. Endocrine 2009; 35: 1: 1-10.

12. Leehey D.J., Song R.H., Alavi N., Singh A.K. Decreased degradative enzymes in mesangial cells cultured in high glucose media. Diabetes 1995; 44: 8: 929-935.

13. McLennan S.V., Yue D.K., Turtle J.R. Effect of glucose on matrix metalloproteinase activity in mesangial cells. Nephron 1998; 79: 3: 293-298.

14. Singh R., Song R.H., Alavi N. et al. High glucose decreases matrix metalloproteinase-2 activity in rat mesangial cells via transforming growth factor-beta1. Exp Nephrol 2001; 9: 4: 249-257.

15. McLennan S.V., Martell S.K., Yue D.K. Effects of mesangium glycation on matrix metalloproteinase activities: possible role in diabetic nephropathy. Diabetes 2002; 51: 8: 2612-2618.

16. Bai Y., Wang L., Li Y. et al. High ambient glucose levels modulates the production of MMP-9 and alpha5 (IV) collagen by cultured podocytes. Cell Physiol Biochem 2006; 17: 1-2: 57-68.

17. McLennan S.V., Wang X.Y., Moreno V. et al. Connective tissue growth factor mediates high glucose effects on matrix degradation through tissue inhibitor of matrix metalloproteinase type 1: implications for diabetic nephropathy. Endocrinology 2004; 145: 12: 5646-5655.

18. Han S.Y., Jee Y.H., Han K.H. et al. An imbalance between matrix metalloproteinase-2 and tissue inhibitor of matrix metalloproteinase-2 contributes to the development of early diabetic nephropathy. Nephrol Dial Transplant 2006; 21: 9: 2406-2416.

19. Qi W., Poronnik P., Young B. et al. Human cortical fibroblast responses to high glucose and hypoxia. Nephron Physiol 2004; 96: 4: p121-p129.

20. McLennan S.V., Kelly D.J., Schache M. et al. Advanced glycation end products decrease mesangial cell MMP-7: a role in matrix accumulation in diabetic nephropathy? Kidney Int 2007; 72: 4: 481-488.

21. Lee M.P., Sweeney G. Insulin increases gelatinase activity in rat glomerular mesangial cells via ERK- and PI-3 kinase-dependent signalling. Diabet Obes Metab 2006; 8: 3: 281-288.

22. Nicholas S.B., Aguiniga E., Ren Y. et al. Plasminogen activator inhibitor-1 deficiency retards diabetic nephropathy. Kidney Int 2005; 67: 4: 1297-1307.

23. Lupia E., Elliot S.J., Lenz O. et al. IGF-1 decreases collagen degradation in diabetic NOD mesangial cells: implications for diabetic nephropathy. Diabetes 1999; 48: 8: 1638-1644.

24. Anderson S.S., Wu K., Nagase H. et al. Effect of matrix glycation on expression of type IV collagen, MMP-2, MMP-9 and TIMP-1 by human mesangial cells. Cell Adhes Commun 1996; 4: 2: 89-101.

25. Yang Q., Xie R.J., Yang T. et al. Transforming growth factor-beta1 and Smad4 signaling pathway down-regulates renal extracellular matrix degradation in diabetic rats. Chin Med Sci J 2007; 22: 4: 243-249.

26. McLennan S.V., Kelly D.J., Cox A.J. et al. Decreased matrix degradation in diabetic nephropathy: effects of ACE inhibition on the expression and activities of matrix metalloproteinases. Diabetologia 2002; 45: 2: 268-275.

27. Liu D.X., Liu X.M., Su Y., Zhang X.J. Renal expression of proto-oncogene Ets-1 on matrix remodeling in experimental diabetic nephropathy. Acta Histochem 2010.

28. Yao X.M., Ye S., Zai Z. M. et al. Simvastatin protects diabetic rats against kidney injury through the suppression of renal matrix metalloproteinase-9 expression. J Endocrinol Invest 2010; 33: 5: 292-296.

29. Mathew R., Futterweit S., Valderrama E. et al. Meprin-alpha in chronic diabetic nephropathy: interaction with the renin-angiotensin axis. Am J Physiol Renal Physiol 2005; 289: 4: F911-F921.

30. Qing-Hua G., Ju-Ming L., Chang-Yu P. et al. The kidney expression of matrix metalloproteinase-9 in the diabetic nephropathy of Kkay mice. J Diabet Complicat 2008; 22: 6: 408-412.

31. Van Huyen J.P., Viltard M., Nehiri T. et al. Expression of matrix metalloproteinases MMP-2 and MMP-9 is altered during nephrogenesis in fetuses from diabetic rats. Lab Invest 2007; 87: 7: 680-689.

32. Seo J.Y., Park J., Yu M.R. et al. Positive feedback loop between plasminogen activator inhibitor-1 and transforming growth factor-beta1 during renal fibrosis in diabetes. Am J Nephrol 2009; 30: 6: 481-490.

33. Del Prete D., Anglani F., Forino M. et al. Down-regulation of glomerular matrix metalloproteinase-2 gene in human NIDDM. Diabetologia 1997; 40: 12: 1449-1454.

34. Romanic A.M., Burns-Kurtis C.L., Ao Z. et al. Upregulated expression of human membrane type-5 matrix metalloproteinase in kidneys from diabetic patients. Am J Physiol Renal Physiol 2001; 281: 2: F309-F317.

35. Cornish T.C., Bagnasco S.M., Macgregor A.M. et al. Glomerular protein levels of matrix metalloproteinase-1 and tissue inhibitor of metalloproteinase-1 are lower in diabetic subjects. J Histochem Cytochem 2009; 57: 11: 995-1001.

36. Suzuki D., Miyazaki M., Jinde K. et al. In situ hybridization studies of matrix metalloproteinase-3, tissue inhibitor of metalloproteinase-1 and type IV collagen in diabetic nephropathy. Kidney Int 1997; 52: 1: 111-119.

37. Thrailkill K.M., Bunn R.C., Moreau C.S. et al. Matrix metalloproteinase-2 dysregulation in type 1 diabetes. Diabetes Care 2007; 30: 9: 2321-2326.

38. Ebihara I., Nakamura T., Shimada N., Koide H. Increased plasma metalloproteinase-9 concentrations precede development of microalbuminuria in non-insulin-dependent diabetes mellitus. Am J Kidney Dis 1998; 32: 4: 544-550.

39. Rysz J., Banach M., Stolarek R.A. et al. Serum matrix metalloproteinases MMP-2 and MMP-9 and metalloproteinase tissue inhibitors TIMP-1 and TIMP-2 in diabetic nephropathy. J Nephrol 2007; 20: 4: 444-452.

40. Chung A.W., Yang H.H., Sigrist M.K. et al. Matrix metalloproteinase-2 and -9 exacerbate arterial stiffening and angiogenesis in diabetes and chronic kidney disease. Cardiovasc Res 2009; 84: 3: 494-504.

41. Nagano M., Fukami K., Yamagishi S. et al. Circulating matrix metalloproteinase-2 is an independent correlate of proteinuria in patients with chronic kidney disease. Am J Nephrol 2009; 29: 2: 109-115.

42. Tashiro K., Koyanagi I., Ohara I. et al. Levels of urinary matrix metalloproteinase-9 (MMP-9) and renal injuries in patients with type 2 diabetic nephropathy. J Clin Lab Anal 2004; 18: 3: 206-210.

43. van der Zijl N.J., Hanemaaijer R., Tushuizen M.E. et al. Urinary matrix metalloproteinase-8 and -9 activities in type 2 diabetic subjects: A marker of incipient diabetic nephropathy? Clin Biochem 2010; 43: 7-8: 635-639.

44. Lauhio A., Sorsa T., Srinivas R. et al. Urinary matrix metalloproteinase -8, -9, -14 and their regulators (TRY-1, TRY-2, TATI) in patients with diabetic nephropathy. Ann Med 2008; 40: 4: 312-320.

45. Kanauchi M., Nishioka H., Nakashima Y. et al. Role of tissue inhibitors of metalloproteinase in diabetic nephropathy. Nippon Jinzo Gakkai Shi 1996; 38: 3: 124-128.

46. Lee M.P., Sweeney G. Insulin increases gelatinase activity in rat glomerular mesangial cells via ERK- and PI-3 kinase-dependent signalling. Diabet Obes Metab 2006; 8: 3: 281-288.

47. Zafiriou S., Stanners S.R., Saad S. et al. Pioglitazone inhibits cell growth and reduces matrix production in human kidney fibroblasts. J Am Soc Nephrol 2005; 16: 3: 638-645.

48. Nicholas S.B., Kawano Y., Wakino S. et al. Expression and function of peroxisome proliferator-activated receptor-gamma in mesangial cells. Hypertension 2001; 37: 2: Pt 2: 722-727.

49. Sarafidis P.A., Stafylas P.C., Georgianos P.I. et al. Effect of thiazolidinediones on albuminuria and proteinuria in diabetes: a meta-analysis. Am J Kidney Dis 2010; 55: 5: 835-847.

50. Ding H.L., Xu M.T., Guo Y. et al. Effect of losartan on the mRNA expressions of MT3-MMP and TIMP-2 in diabetic kidneys. Rev Diabet Stud 2005; 2: 4: 216-220.

51. Aoyama T., Yamamoto S., Kanematsu A. et al. Local delivery of matrix metalloproteinase gene prevents the onset of renal sclerosis in streptozotocin-induced diabetic mice. Tissue Eng 2003; 9: 6: 1289-1299.


Для цитирования:


., . Матриксные металлопротеиназы и их ингибиторы в развитии фиброза почек при сахарном диабете. Проблемы Эндокринологии. 2012;58(1):39-44. https://doi.org/10.14341/probl201258139-44

For citation:


Bondar' I.A., Klimontov V.V. The role of matrix metalloproteinases and their inhibitors in the development of renal fibrosis in the patients with diabetes mellitus. Problems of Endocrinology. 2012;58(1):39-44. (In Russ.) https://doi.org/10.14341/probl201258139-44

Просмотров: 27


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0375-9660 (Print)
ISSN 2308-1430 (Online)