Preview

Problems of Endocrinology

Advanced search

Trabecular bone score as one of the new methods of non-invasive evaluation of bone microarchitecture in patients with Cushing’s syndrome

https://doi.org/10.14341/probl20156149-16

Abstract

Objective - to evaluate the value of trabecular bone score and risk factors of fractures in patients with Cushing’s syndrome (CS). Material and methods. One hundred eighty two patients with laboratory-confirmed Cushing’s syndrome were enrolled. All patients underwent measurement of bone mineral density (BMD) at the lumbar spine (LI-LIV), femoral neck and total hip using DXA Prodigy (GEHC Lunar, Madison, WI, USA). Trabecular bone score (TBS) was assessed retrospectively on the basis of already existing DXA images using software TBS iNsight software v2.1 (Medimaps, Merignac, France). Each patient was interviewed for the presence of low-traumatic fractures during the active stage of the disease. A lateral X-ray of the thoracic and lumbar spine ThIV-LV was performed to estimate vertebral fractures. Twenty-four hours urinary free cortisol (24hUFC) was measured by imunochemiluminescence assay VITROS ECi with the preliminary extraction with diethyl ether (reference values 60-413 nmol/24 h). Results. Among 182 patients with CS (149 women, 33 men), Cushing’s disease was confirmed in 151 cases, 9 patients diagnosed with benign adrenal tumor and 22 - ACTH-ectopic syndrome. The median of age - 35 (Q25-Q75 27-49) years, body mass index - 29 (26-33) kg/m2, 24hUFC - 1760 (985-2971) nmol/24h. Fractures were confirmed in 80 (44%) cases, 70 patients suffered from vertebral fractures, which were multiple in 53 cases; 23 patients had non-vertebral fractures. Median of trabecular bone score was 1.205 (1.102-1.307), which is much lower than expected in healthy volunteers (>1.350), while the decrease in bone mineral density (BMD) did not correspond to the severity and prevalence of osteoporosis fractures: LI-LIV Z-score - 1.7 (2.5-0.73); femoral neck Z-score - 1 (-1.6- -0.4). However, when using binary logistic regression analysis (adjusted for sex, age, body mass index, bone mineral density, trabecular bone score and 24hUFC) revealed that the most significant predictor of fracture is high levels of 24hUFC (p=0.001) . The high prevalence of vertebral fractures in patients with CS most likely influenced the results of trabecular bone score and its ability to predict fractures. Conclusion. Patients with active CS have low trabecular bone score, rather than bone mineral density, which reflects deterioration in bone microarchitecture. The low-traumatic fracture occurrence depends on the severity of CS reflected in 24hUFC levels.

About the Authors

N V Dragunova
The National Research Center for Endocrinology


Z E Belaya
The National Research Center for Endocrinology
Russian Federation


N I Sasonova
The National Research Center for Endocrinology
Russian Federation


A G Sopodovnikov
Ural State Medical Academy
Russian Federation


T T Tsoriev
The National Research Center for Endocrinology
Russian Federation


L Ya Rozhinskaya
The National Research Center for Endocrinology
Russian Federation


D Hans
Center of bone diseases, Lausanne University Hospital
United Kingdom


G A Melnichenko
The National Research Center for Endocrinology
Russian Federation


I I Dedov
The National Research Center for Endocrinology
Russian Federation


References

1. Pothuaud L, Carceller P, Hans D. Correlations between grey-level variations in 2D projection images (TBS) and 3D microarchitecture: applications in the study of human trabecular bone microarchitecture. Bone. 2008;42(4):775-787. doi: 10.1016/j.bone.2007.11.018.

2. Hans D, Barthe N, Boutroy S, et al. Correlations between trabecular bone score, measured using anteroposterior dual-energy X-ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. J Clin Densitom. 2011;14(3):302-312. doi: 10.1016/j.jocd.2011.05.005.

3. Silva BC, Bilezikian JP. Trabecular bone score: perspectives of an imaging technology coming of age. Arq Bras Endocrinol Metabol. 2014;58(5):493-503. doi: 10.1590/0004-2730000003456.

4. Cormier C, Lamy O, Poriau S. TBS in routine clinial practice: proposals of use. For the Medimaps Group. 2012.

5. Белая Ж.Е., Рожинская Л.Я., Мельниченко Г.А., Дедов И.И. Современный взгляд на скрининг и диагностику эндогенного гиперкортицизма // Проблемы Эндокринологии. - 2012. - Т. 58. - №4 - C. 35-41. [Belaia ZE, Rozhinskaia LI, Mel'nichenko GA, Dedov II. Current views of the screening and diagnostics of endogenous hypercorticism. Probl Endokrinol (Mosk). 2012;58(4):35-41. (In Russ).] doi: 10.14341/probl201258435-41.

6. Метаболические осложнения эндогенного гиперкортицизма. Выбор пациентов для скрининга // Ожирение и метаболизм. - 2013. - Т. 10. - №1 - C. 26-31. [Belaya ZE, Rozhinskaya LY, Dragunova NV, et al. Metabolic complications of endogenous Cushing: patient selection for screening. Obesity and metabolism. 2013; (1):26-31.] doi: 10.14341/2071-8713-5068.

7. Драгунова Н.В., Белая Ж.Е., Рожинская Л.Я. Состояние костно-мышечной системы при эндогенном гиперкортицизме. // Остеопороз и остеопатии. - 2012. - №3 - C. 18-24. [Dragunova NV, Belaya ZE, Rozhinskaya LY. Musculoskeletal system in the endogenous hypercortisolism. Osteoporosis and osteopathy. 2012(3):18-24.(In Russ.)]

8. Tauchmanova L, Pivonello R, Di Somma C, et al. Bone demineralization and vertebral fractures in endogenous cortisol excess: role of disease etiology and gonadal status. J Clin Endocrinol Metab. 2006;91(5):1779-1784. doi: 10.1210/jc.2005-0582.

9. Futo L, Toke J, Patocs A, et al. Skeletal differences in bone mineral area and content before and after cure of endogenous Cushing's syndrome. Osteoporos Int. 2008;19(7):941-949. doi: 10.1007/s00198-007-0514-x.

10. Belaya ZE, Rozhinskaya LY, Solodovnikov AG, et al. Glucocorticoid-induced osteoporosis: fractures and bone remodeling in patients with endogenous Cushing’s syndrome. In series: Endocrinology Research and Clinical Developments. New-York: Nova Science Publishers, Inc; 2013.

11. Valassi E, Santos A, Yaneva M, et al. The European Registry on Cushing's syndrome: 2-year experience. Baseline demographic and clinical characteristics. Eur J Endocrinol. 2011;165(3):383-392. doi: 10.1530/EJE-11-0272.

12. Белая Ж.Е., Драгунова Н.В., Рожинская Л.Я., и др. Низкотравматичные переломы у пациентов с эндогенным гиперкортицизмом. Предикторы и факторы риска, влияние на качество жизни. // Остеопороз и остеопатии. – 2013. - №1 – С. 7-13. [Belaya ZE, Dragunova NV, Rozhinskaya LY, et al. Metabolic complications of endogenous Cushing: patient selection for screening. Osteoporosis and osteopathy. 2013;(1):7-13. (in Russ).]

13. Ragnarsson O, Glad CA, Bergthorsdottir R, et al. Body composition and bone mineral density in women with Cushing's syndrome in remission and the association with common genetic variants influencing glucocorticoid sensitivity. Eur J Endocrinol. 2015;172(1):1-10. doi: 10.1530/EJE-14-0747.

14. Белая Ж.Е., Ильин А.В., Мельниченко Г.А., и др. Автоматизированный электрохемилюминесцентный метод определения кортизола в слюне для диагностики эндогенного гиперкортицизма среди пациентов с ожирением // Ожирение и метаболизм. - 2011. - Т. 8. - №2 - C. 56-63. [Belaya ZE, Il'in AV, Mel'nichenko GA, et al. Avtomatizirovannyy elektrokhemilyuminestsentnyy metod opredeleniya kortizola v slyune dlya diagnostiki endogennogo giperkortitsizma sredi patsientov s ozhireniem. Obesity and metabolism. 2011;8(2):56-63.(In Russ.)] doi: 10.14341/2071-8713-4954.

15. Genant HK, Wu CY, van Kuijk C, Nevitt MC. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res. 1993;8(9):1137-1148. doi: 10.1002/jbmr.5650080915.

16. Schousboe JT, Shepherd JA, Bilezikian JP, Baim S. Executive summary of the 2013 International Society for Clinical Densitometry Position Development Conference on bone densitometry. J Clin Densitom. 2013;16(4):455-466. doi: 10.1016/j.jocd.2013.08.004.

17. Gosfield EI, Bonner FJJ. Evaluating Bone Mineral Density in Osteoporosis. Am J Phys Med Rehabil. 2000;79(3):283-291.

18. Glas AS, Lijmer JG, Prins MH, et al. The diagnostic odds ratio: a single indicator of test performance. J Clin Epidemiol. 2003;56(11):1129-1135. doi: 10.1016/s0895-4356(03)00177-x.

19. Eller-Vainicher C, Morelli V, Ulivieri FM, et al. Bone quality, as measured by trabecular bone score in patients with adrenal incidentalomas with and without subclinical hypercortisolism. J Bone Miner Res. 2012;27(10):2223-2230. doi: 10.1002/jbmr.1648.

20. Colson F, Picard A, Rabier B, Vignon E. Trabecular bone microarchitecture alteration in glucocorticoids treated women in clinical routine?: A TBS Evaluation. J Bone Miner Res. 2009;24(S1):129.

21. Breban S, Briot K, Kolta S, et al. Identification of rheumatoid arthritis patients with vertebral fractures using bone mineral density and trabecular bone score. J Clin Densitom. 2012;15(3):260-266. doi: 10.1016/j.jocd.2012.01.007.

22. Leslie WD, Aubry-Rozier B, Lamy O, et al. TBS (trabecular bone score) and diabetes-related fracture risk. J Clin Endocrinol Metab. 2013;98(2):602-609. doi: 10.1210/jc.2012-3118.

23. Silva BC, Boutroy S, Zhang C, et al. Trabecular bone score (TBS)--a novel method to evaluate bone microarchitectural texture in patients with primary hyperparathyroidism. J Clin Endocrinol Metab. 2013;98(5):1963-1970. doi: 10.1210/jc.2012-4255.

24. Dufour R, Winzenrieth R, Heraud A, et al. Generation and validation of a normative, age-specific reference curve for lumbar spine trabecular bone score (TBS) in French women. Osteoporos Int. 2013;24(11):2837-2846. doi: 10.1007/s00198-013-2384-8.

25. Leslie WD, Krieg MA, Hans D, Manitoba Bone Density P. Clinical factors associated with trabecular bone score. J Clin Densitom. 2013;16(3):374-379. doi: 10.1016/j.jocd.2013.01.006.

26. El Hage R, Khairallah W, Bachour F, et al. Influence of age, morphological characteristics, and lumbar spine bone mineral density on lumbar spine trabecular bone score in Lebanese women. J Clin Densitom. 2014;17(3):434-435. doi: 10.1016/j.jocd.2013.03.012.

27. Kanis JA, Johansson H, Oden A, et al. A meta-analysis of prior corticosteroid use and fracture risk. J Bone Miner Res. 2004;19(6):893-899. doi: 10.1359/JBMR.040134.

28. van Staa TP. Oral corticosteroids and fracture risk: relationship to daily and cumulative doses. Rheumatology (Oxford). 2000;39(12):1383-1389. doi: 10.1093/rheumatology/39.12.1383.

29. Белая Ж.Е., Рожинская Л.Я., Мельниченко Г.А., и др. Возможности маркёра костного обмена - остеокальцина для диагностики эндогенного гиперкортицизма и вторичного остеопороза // Остеопороз и остеопатии. - 2011. - №2 - C. 7-10. [Belaya ZE, Rozhinskaya LY, Mel, et al. Vozmozhnosti markera kostnogo obmena - osteokal'tsina dlya diagnostiki endogennogo giperkortitsizma i vtorichnogo osteoporoza. Osteoporosis and osteopathy. 2011;(2):7-10.(in Russ.)]

30. Белая Ж.Е., Рожинская Л.Я., Драгунова Н.В., и др. Сывороточные концентрации белков регуляторов остеобластогенеза и остеокластогенеза у пациентов с эндогенным гиперкортицизмом // Остеопороз и остеопатии. - 2012. - №2 - C. 3-8. [Belaya ZE, Rozhinskaya LY, Dragunova NV, et al. Serum Concentrations of protein regulators osteoblastogenesis and osteoclastogenesis in patients with endogenous hypercorticism. Osteoporosis and osteopathy. 2012;(2):3-8. (In Russ.)]

31. Kaltsas G, Makras P. Skeletal diseases in Cushing's syndrome: osteoporosis versus arthropathy. Neuroendocrinology. 2010;92 Suppl 1:60-64. doi: 10.1159/000314298.


Review

For citations:


Dragunova N.V., Belaya Z.E., Sasonova N.I., Sopodovnikov A.G., Tsoriev T.T., Rozhinskaya L.Ya., Hans D., Melnichenko G.A., Dedov I.I. Trabecular bone score as one of the new methods of non-invasive evaluation of bone microarchitecture in patients with Cushing’s syndrome. Problems of Endocrinology. 2015;61(4):9-16. https://doi.org/10.14341/probl20156149-16

Views: 672


ISSN 0375-9660 (Print)
ISSN 2308-1430 (Online)