Preview

Problems of Endocrinology

Advanced search

Neuroprotective properties of incretin mimetics in brain ischemia and neurodegenerative diseases

https://doi.org/10.14341/probl201763158-67

Abstract

Type 2 diabetes mellitus (DMT2) is a disease significantly increasing the risk of neurodegenerative disorders and stroke. The keen interest in anti-diabetic medications, which can reduce the risk of cardiovascular and neurodegenerative disorders, is caused by the substantial rise in the number of patients with DMT2 as a result of population aging.


According to the clinical trial data, incretin mimetics significantly reduce the glycosylated hemoglobin level, while moderately reducing blood pressure and adipose tissue mass in DMT2patients. When added to the conventional hypoglycemic therapy, analogues of glucagon-like peptide-1 (GLP-1) significantly decrease the risk of cardiovascular complications in DMT2 patients. The positive effect of these medications in patients with neurodegenerative diseases, both the independent and T2DM-associated ones, has been observed. Today, there are ongoing clinical trials of the effect of GLP-1 analogues in patients with Parkinson’s and Alzheimer’s disease.


The available data show that incretin mimetics exhibit neuroprotective properties due to GLP-1 receptors on neurons, microglial and endothelial cells. These receptors were found to be able to trigger the major intracellular signaling pathways that maintain cellular function and inhibit apoptosis under pathological conditions.


In this review, we summarize the results of studies focused on neuroprotective properties of drugs with the incretin-mimetic mechanism of action. The findings on their effect on a number of pathological processes in patients with neurodegenerative diseases and cerebrovascular disturbance are reported. The ability of incretin mimetics to reduce microglial activation, secretion of proinflammatory cytokines and pathological protein aggregation, as well as inhibit neuronal apoptosis, improve mitochondrial functional state, enhance expression of trophic factors and stimulate neurogenesis, is demonstrated.

About the Authors

Ivan N. Tyurenkov

Volgograd State Medical University


Russian Federation

MD, PhD, Professor



Dmitry A. Bakulin

Volgograd State Medical University


Russian Federation

MD



Denis V. Kurkin

Volgograd State Medical University


Russian Federation

PhD



Elena V. Volotova

Volgograd State Medical University


Russian Federation

MD, PhD



References

1. Дедов И.И., Шестакова М.В., Галстян Г.Р. Распространенность сахарного диабета 2 типа у взрослого населения России (исследование NATION). // Сахарный диабет. 2016. – Т.19. – №2. — С.104-112. [Dedov II, Shestakova MV, Galstyan GR. The prevalence of type 2 diabetes mellitus in the adult population of Russia (nation study). Diabetes mellitus. 2016;19(2):104-112. (In Russ.)]. doi: 10.14341/dm2004116-17

2. Saraiva F, Sposito AC. Cardiovascular effects of glucagon-like peptide-1 (GLP-1) receptor agonists. Cardiovasc Diabetol. 2014;13:142. doi: 10.1186/s12933-014-0142-7

3. Гудкова В.В, Стаховская Л.В., Мешкова К.С., Шанина Т.В. Инсульт у больных сахарным диабетом как мультидисциплинарная проблема. // Consilium Medicum. — 2015. — Т.17. — №9. — С.27-31. [Gudkova VV, Stakhovskaya LV, Meshkova KS, Shanina TV. Stroke patients with diabetes as a multidisciplinary problem. Consilium Medicum. 2015;17(9):27-31. (In Russ.)].

4. Дедов И.И., Шестакова М.В., Галстян Г.Р., и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. Под ред. Дедова И.И., Шестаковой М.В. (7-й выпуск). // Сахарный диабет. — 2015. — Т.18. — №1 (приложение 1). — С.1-112. [Dedov II, Shestakova MV, Galstyan GR, et al. Standards of specialized diabetes care. Edited by Dedov II, Shestakova MV. (7th edition). Diabetes mellitus. 2015;18(1S):1-112. (In Russ.)]. doi: 10.14341/dm20151S1-112

5. Тюренков И.Н., Куркин Д.В., Волотова Е.В., и др. Десять новых мишеней для разработки лекарственных средств лечения СД 2-го типа и метаболического синдрома. // Сахарный диабет. — 2015. — Т.18. — №1. — С.101-109. [Tyurenkov IN, Kurkin DV, Volotova EV, et al. Drug discovery for type 2 diabetes mellitus and metabolic syndrome: ten novel biological targets. Diabetes mellitus. 2015;18(1):101-109. (In Russ.)]. doi: 10.14341/dm20151101-109

6. Аметов А.С., Камынина Л.Л., Ахмедова З.Г. Кардиопротективные эффекты агонистов рецепторов глюкагоноподобного пептида-1. // Кардиология. — 2014. — Т.54. — №7. — С.92-96. [Ametov AS, Kamynina LL, Akhmedova ZG. Cardioprotective effects of glucagon-like peptide-1 receptor agonists. Kardiologiia. 2014;54(7):92-96. (In Russ.)]. doi: 10.18565/cardio.2014.7.92-96

7. Власов Т.Д., Симаненкова А.В., Дора С.В., Шляхто Е.В. Механизмы нейропротективного действия инкретиномиметиков. // Сахарный диабет. —2016. — Т.19. — №1. — C. 16-23. [Vlasov TD, Simanenkova AV, Dora SV, Shlyakhto EV. Mechanisms of neuroprotective action of incretin mimetics. Diabetes mellitus. 2016;19(1):16-23. (In Russ.)]. doi: 10.14341/dm7192

8. Сухарева О.Ю., Шмушкович И.А., Шестакова Е.А., Шестакова М.В. система инкретинов при CД2: сердечно-сосудистые эффекты. // Проблемы эндокринологии. — 2012. — Т.58. — №. 6. — С.33-42. [Sukhareva OI, Shmushkovich IA, Shestakova EA, Shestakova MV. The incretin system in type 2 diabetes mellitus: cardiovascular effects. Probl of endocrin (Mosc). 2012;58(6):33-42. (In Russ.)]. doi: 10.14341/probl201258633-42

9. Tomlinson B, Hu M, Zhang Y, et al. An overview of new GLP-1 receptor agonists for type 2 diabetes. Expert Opin Investig Drugs. 2016;25(2):145-158. doi: 10.1517/13543784.2016.1123249

10. Куркин Д.В., Волотова Е.В., Бакулин Д.А., и др. Система инкретинов как перспективная фармакологическая мишень для сахароснижающей терапии. // Фарматека. — 2016. — №5. — С.45-50. [Kurkin DV, Volotova EV, Bakulin DA, et al. Incretin system as promising pharmacological target for hypoglycemic therapy. Farmateka. 2016;(5):45-50. (In Russ.)].

11. Мкртумян А.М., Бирюкова Е.В., Морозова И.А. Эффективность и безопасность ситаглиптина: доказательная база для клинического применения и перспективы. // Поликлиника. — 2015. — №1-2. — С.63-70. [Мkrtumjаn AM, Birjukova EV, Morozova IA. Jeffektivnost’ i bezopasnost’ sitagliptina: dokazatel’naja baza dlja klinicheskogo primenenija i perspektivy. Poliklinika. 2015;(1-2):63-70. (In Russ.)].

12. Спасов А.А., Петров В.И., Чепляева Н.И., Ленская К.В. Фундаментальные основы поиска лекарственных средств для терапии сахарного диабета 2-го типа. // Вестник Российской Академии медицинских наук. — 2013. — №2. — С.43-49. [Spasov AA, Petrov VI, Cheplyaeva NI, Lenskaya KV. Fundamental bases of search of medicines for therapy of a diabetes mellitus type 2. Annals of the Russian academy of medical sciences. 2013;68(2):43-49. (In Russ.)]. doi: 10.15690/vramn.v68i2.548

13. Тюренков И.Н., Бакулин Д.А., Куркин Д.В., и др. Агонисты GPR119 рецепторов: характеристика, физиологическая роль и перспективы использования в терапии сахарного диабета 2-го типа и метаболического синдрома. // Успехи физиологических наук. — 2015. — Т.46. — №4. — С. 28-37. [Tyurenkov IN, Kurkin DV, Bakulin DA, et al. GPR 119 receptor agonists: characteristics, physiological role, prospects of use in the treatment of diabetes mellitus type 2 and metabolic syndrome. Uspekhi fiziologicheskikh nauk. 2015;46(4):28-37. (In Russ.)].

14. Athauda D, Foltynie T. The glucagon-like peptide-1 (GLP) receptor as a therapeutic target in parkinson’s disease: mechanisms of action. Drug Discov Today. 2016;21(5):802-818. doi: 10.1016/j.drudis.2016.01.013

15. Gumuslu E, Mutlu O, Celikyurt IK, et al. Exenatide enhances cognitive performance and upregulates neurotrophic factor gene expression levels in diabetic mice. Fundam Clin Pharmacol. 2016;30(4):376-384. doi: 10.1111/fcp.12192

16. Ma M, Hasegawa Y, Koibuchi N, et al. DPP-4 inhibition with linagliptin ameliorates cognitive impairment and brain atrophy induced by transient cerebral ischemia in type 2 diabetic mice. Cardiovasc Diabetol. 2015;14:54. doi: 10.1186/s12933-015-0218-z

17. Cabou C, Burcelin R. GLP-1, the gut-brain, and brain-periphery axes. Rev Diabet Stud. 2011;8(3):418-431. doi: 10.1900/rds.2011.8.418

18. Heppner KM, Kirigiti M, Secher A, et al. Expression and distribution of glucagon-like peptide-1 receptor mrna, protein and binding in the male nonhuman primate (Macaca mulatta) brain. Endocrinology. 2015;156(1):255-267. doi: 10.1210/en.2014-1675

19. Campbell JE, Drucker DJ. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 2013;17(6):819-837. doi: 10.1016/j.cmet.2013.04.008

20. Candeias EM, Sebastião IC, Cardoso SM, et al. Gut-brain connection: the neuroprotective effects of the anti-diabetic drug liraglutide. World J Diabetes. 2015;6(6):807-827. doi: 10.4239/wjd.v6.i6.807

21. Li Y, Li L, Hölscher C. Incretin-based therapy for type 2 diabetes mellitus is promising for treating neurodegenerative diseases. Rev Neurosci. 2016. doi: 10.1515/revneuro-2016-0018

22. Mcclean PL, Jalewa J, Hölscher C. Prophylactic liraglutide treatment prevents amyloid plaque deposition, chronic inflammation and memory impairment in APP/PS1 mice. Behav Brain Res. 2015;293:96-106. doi: 10.1016/j.bbr.2015.07.024

23. Симаненкова А.В., Жигалова А.А., Шумеева А.Г., и др. Нейропротективное действие агониста рецептора глюкогоноподобного пептида-1. // Медицинский вестник Башкортостана. — 2014. — №5. — С.156-159. [Simanenkova AV, Zhigalova AA, Shumeeva AG, et al. Neuroprotective effect of glucagon like peptide-1 receptor agonist. Bashkortostan medical journal. 2014;9(5):156-159. (In Russ.)].

24. Gonçalves A, Lin CM, Muthusamy A, et al. Protective effect of a GLP-1 analog on ischemia-reperfusion induced blood-retinal barrier breakdown and inflammation. Invest Ophthalmol Vis Sci. 2016;57(6):2584-2592. doi: 10.1167/iovs.15-19006

25. Yang D, Nakajo Y, Iihara K, et al. Alogliptin, a dipeptidylpeptidase-4 inhibitor, for patients with diabetes mellitus type 2, induces tolerance to focal cerebral ischemia in non-diabetic, normal mice. Brain Res. 2013;1517:104-113. doi: 10.1016/j.brainres.2013.04.015

26. Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311-322. doi: 10.1056/nejmoa1603827

27. Green JB, Bethel MA, Armstrong PW, et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2015;373(3):232-242. doi: 10.1056/nejmoa1501352

28. Pisanu A, Lecca D, Mulas G, et al. Dynamic changes in pro- and anti-inflammatory cytokines in microglia after PPAR-γ agonist neuroprotective treatment in the mptpp mouse model of progressive parkinson’s disease. Neurobiol Dis. 2014;71:280-291. doi: 10.1016/j.nbd.2014.08.011

29. Wang WY, Tan MS, Yu JT, Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med. 2015;3(10):136. doi: 10.3978/j.issn.2305-5839.2015.03.49

30. Cao L, Li D, Feng P, et al. A novel dual GLP-1 and GIP incretin receptor agonist is neuroprotective in a mouse model of Parkinson’s disease by reducing chronic inflammation in the brain. Neuroreport. 2016;27(6):384-391. doi: 10.1097/wnr.0000000000000548

31. Nassar NN, Al-Shorbagy MY, Arab HH, Abdallah DM. Saxagliptin: a novel antiparkinsonian approach. Neuropharmacology. 2015;89:308-317.doi: 10.1016/j.neuropharm.2014.10.007

32. Судаков Н.П., Никифоров С.Б., Константинов Ю.М., и др. Механизмы участия митохондрий в развитии патологических процессов, сопровождающихся ишемией и реперфузией. // Бюллетень ВСНЦ СО РАМН. — 2006. — №5. — С.332-336. [Sudakov NP, Nikiforov SB, Konstantinov YuM, et al. The mechanisms of mitochondria participation in development of different pathologic processes associated with ischemia and reperfusion. Bulletin of the East Siberian Scientific Center SB RAMS. 2006;5:332-336. (In Russ.)].

33. Guardia-Laguarta C, Area-Gomez E, Rüb C, et al. a-Synuclein is localized to mitochondria-associated ER membranes. J Neurosci. 2014;34(1):249-259. doi: 10.1523/jneurosci.2507-13.2014

34. Chen Y, Zhang Y, Li L, Hölscher C. Neuroprotective effects of geniposide in the MPTP mouse model of Parkinson’s disease. Eur J Pharmacol. 2015;768:21-27. doi: 10.1016/j.ejphar.2015.09.029

35. Zhan Y, Sun HL, Chen H, et al. Glucagon-like peptide-1 (GLP-1) protects vascular endothelial cells against advanced glycation end products (AGEs) — induced apoptosis. Med Sci Monit. 2012;18(7):286-291. doi: 10.12659/msm.883207

36. Ferreira ST, Clarke JR, Bomfim TR, De Felice FG. Inflammation, defective insulin signaling, and neuronal dysfunction in Alzheimer’s disease. Alzheimers Dement. 2014;10(1 Suppl):S76-S83. doi: 10.1016/j.jalz.2013.12.010

37. Morales PE, Torres G, Sotomayor-Flores C, et al. GLP-1 promotes mitochondrial metabolism in vascular smooth muscle cells by enhancing endoplasmic reticulum-mitochondria coupling. Biochem Biophys Res Commun. 2014;446(1):410-416. doi: 10.1016/j.bbrc.2014.03.004

38. Орлова Д.Д., Трибулович В.Г., Гарабаджиу А.В., и др. Роль митохондриального морфогенеза в регуляции апоптоза. // Цитология. — 2015. — Т.57. — №3. — С.184-191. [Orlova DD, Tribulovich VG, Garabadzhiu AV, et al. The role of mitochondrial dynamics in cell death. Tsitologiia. 2015;57(3):184-191. (In Russ.)].

39. Kang MY, Oh TJ, Cho YM. Glucagon-like peptide-1 increases mitochondrial biogenesis and function in INS-1 rat insulinoma cells. Endocrinol Metab (Seoul). 2015;30(2):216-220. doi: 10.3803/enm.2015.30.2.216

40. Zeng Y, Yang K, Wang F, et al. The glucagon like peptide 1 analogue, exendin-4, attenuates oxidative stress-induced retinal cell death in early diabetic rats through promoting Sirt1 and Sirt3 expression. Exp Eye Res. 2016;151:203-211. doi: 10.1016/j.exer.2016.05.002

41. Boutant M, Cantó C. SIRT1 metabolic actions: integrating recent advances from mouse models. Mol Metab. 2013;3(1):5-18. doi: 10.1016/j.molmet.2013.10.006

42. Krasner NM, Ido Y, Ruderman NB, Cacicedo JM. Glucagon-like peptide-1 (GLP-1) analog liraglutide inhibits endothelial cell inflammation through a calcium and AMPK dependent mechanism. PLoS One. 2014;9(5):e97554. doi: 10.1371/journal.pone.0097554

43. Eriksson L, Nyström T. Antidiabetic agents and endothelial dysfunction — beyond glucose control. Basic Clin Pharmacol Toxicol. 2015;117(1):15-25. doi: 10.1111/bcpt.12402

44. Tate M, Chong A, Robinson E, et al. Selective targeting of glucagon-like peptide-1 signaling as a novel therapeutic approach for cardiovascular disease in diabetes. Br J Pharmacol. 2015;172(3):721-736. doi: 10.1111/bph.12943

45. Смирнов А.В., григорьева Н.В., Горелик Е.В. Патологическая анатомия цереброваскулярной болезни, стратегии стимуляции нейрогенеза. // Вестник Волгоградского государственного медицинского университета. — 2013. — Т.46. — №2. — С.3-8. [Smirnov AV, Grigoryeva NV, Gorelik EV. Morbid anatomy of cerebrovascular disease, strategies stimulation of neurogenesis. Journal of VolgSMU. 2013;46(2):3-8. (In Russ.)].

46. Luciani P, Deledda C, Benvenuti S, et al. Differentiating effects of the glucagon-like peptide-1 analogue exendin-4 in a human neuronal cell model. Cell Mol Life Sci. 2010;67(21):3711-3723. doi: 10.1007/s00018-010-0398-3

47. Bertilsson G, Patrone C, Zachrisson O. Peptide hormone exendin-4 stimulates subventricular zone neurogenesis in the adult rodent brain and induces recovery in an animal model of Parkinson’s disease. J Neurosci Res. 2008;86(2):326-338.

48. Darsalia V, Olverling A, Larsson M, et al. Linagliptin enhances neural stem cell proliferation after stroke in type 2 diabetic mice. Regul Pept. 2014;190-191:25-31. doi: 10.1016/j.regpep.2014.05.001

49. Kotzbauer PT, Cairns NJ, Campbell MC, et al. Pathologic accumulation of α-synuclein and Aβ in Parkinson disease patients with dementia. Arch Neurol. 2012;69(10):1326-1331. doi:10.1001/archneurol.2012.1608

50. Medina M, Avila J. New insights into the role of glycogen synthase kinase-3 in Alzheimer’s disease. Expert Opin Ther Targets. 2014;18(1):69-77. doi: 10.1517/14728222.2013.843670

51. Yuan YH, Yan WF, Sun JD, et al. The molecular mechanism of rotenone-induced α-synuclein aggregation: emphasizing the role of the calcium/GSK3β pathway. Toxicol Lett. 2015;233(2):163-171. doi: 10.1016/j.toxlet.2014.11.029

52. Donmez G, Arun A, Chung CY, et al. SIRT1 protects against α-synuclein aggregation by activating molecular chaperones. J Neurosci. 2012;32(1):124-132. doi: 10.1523/jneurosci.3442-11.2012

53. Abbas T, Faivre E, Hölscher C. Impairment of synaptic plasticity and memory formation in GLP-1 receptor ko mice: interaction between type 2 diabetes and Alzheimer’s disease. Behav Brain Res. 2009;205(1):265-271. doi: 10.1016/j.bbr.2009.06.035

54. Santiago JA, Potashkin JA. Shared dysregulated pathways lead to Parkinson’s disease and diabetes. Trends Mol Med. 2013;19(3):176-186. doi: 10.1016/j.molmed.2013.01.002

55. Wang L, Zhai YQ, Xu LL, et al. Metabolic inflammation exacerbates dopaminergic neuronal degeneration in response to acute MPTP challenge in type 2 diabetes mice. Exp


Supplementary files

1. Рисунок_1._Возможные пути нейропротективного действия ГПП-1.jpg
Subject
Type Исследовательские инструменты
View (491KB)    
Indexing metadata ▾
2. Рис. 1. Возможные пути нейропротективного действия ГПП-1 [20, 29, 36].
Subject
Type Исследовательские инструменты
View (103KB)    
Indexing metadata ▾

Review

For citations:


Tyurenkov I.N., Bakulin D.A., Kurkin D.V., Volotova E.V. Neuroprotective properties of incretin mimetics in brain ischemia and neurodegenerative diseases. Problems of Endocrinology. 2017;63(1):58-67. https://doi.org/10.14341/probl201763158-67

Views: 2021


ISSN 0375-9660 (Print)
ISSN 2308-1430 (Online)