Preview

Problems of Endocrinology

Advanced search

The role of indirect calorimetry in assessing of resting metabolic rate in obese children

https://doi.org/10.14341/probl8754

Abstract

Basal metabolism accounts for more than half of daily energy expenditure and characterizes energy expenditure necessary to maintain the vital body functions at rest. The lean body mass makes the greatest contribution to the formation of basal metabolism. The «gold standard» for assessing basal metabolism is indirect respiratory calorimetry. This technique also evaluates, apart from basal metabolism, the rate of macronutrient oxidation, which is an important component of a personalized diet. In clinical practice, formulas for calculating basal metabolism are widely used, but their accuracy in children should be verified. Indirect calorimetry is characterized by a high variability of the measured parameters, which is related to the experimental peculiarities. This review briefly describes the main techniques for assessing basal metabolism and the methodology of indirect respiratory calorimetry in adults and its use in the child population. Also, we provide the literature data on the accuracy of assessing basal metabolism in obese children based on the most commonly used calculation formulas. Investigation of the energy metabolism features is necessary to elucidate the mechanisms of obesity pathogenesis and develop new techniques for its prevention and treatment.

About the Author

Pavel L. Okorokov

Endocrinology Research Center


Russian Federation

MD, PhD



References

1. Gallagher D, Allen A, Wang Z, et al. Smaller organ tissue mass in the elderly fails to explain lower resting metabolic rate. Ann N Y Acad Sci. 2006;904(1):449-455. doi: 10.1111/j.1749-6632.2000.tb06499.x

2. Gallagher D, Belmonte D, Deurenberg P, et al. Organ-tissue mass measurement allows modeling of REE and metabolically active tissue mass. Am J Physiol. 1998;275(2 Pt 1):E249-E258.

3. Bosy-Westphal A, Kossel E, Goele K, et al. Contribution of individual organ mass loss to weight loss-associated decline in resting energy expenditure. Am J Clin Nutr. 2009;90(4):993-1001. doi: 10.3945/ajcn.2008.2740

4. Bosy-Westphal A, Reinecke U, Schlorke T, et al. Effect of organ and tissue masses on resting energy expenditure in underweight, normal weight and obese adults. Int J Obes Relat Metab Disord. 2004;28(1):72-79. doi: 10.1038/sj.ijo.0802526

5. Muller MJ, Bosy-Westphal A, Kutzner D, Heller M. Metabolically active components of fat free mass (FFM) and resting energy expenditure (REE) in humans. Forum Nutr. 2003;56:301-303.

6. Harris JA, Benedict FG. A biometric study of human basal metabolism.Proc Natl Acad Sci USA. 1918;4(12):370-373. PMC1091498

7. Schofield WN. Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr. 1985;39(Suppl 1):5-41.

8. Energy and protein requirements. Report of a joint FAO/WHO/UNU Expert Consultation. World Health Organ Tech Rep Ser. 1985;724:1-206.

9. Trumbo P, Schlicker S, Yates AA, et al. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc. 2002;102(11):1621-1630.

10. Mifflin MD, St Jeor ST, Hill LA, et al. A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr. 1990;51(2):241-247.

11. Molnar D, Jeges S, Erhardt E, Shutz Y. Measured and predicted resting metabolic rate in obese and non obese adolescents. J Pediatr. 1995;127(4):571-577. doi: 10.1016/S0022-3476(95)70114-1

12. Lazzer S, Agosti F, De Col A, Sartorio A. Development and cross-validation of prediction equations for estimating resting energy expenditure in severely obese Caucasian children and adolescents. Br J Nutr. 2007;96(05). doi: 10.1017/bjn20061941

13. van Mil EG, Westerterp KR, Kester AD, Saris WH. Energy metabolism in relation to body composition and gender in adolescents. Arch Dis Child. 2001;85(1):73-78. doi: 10.1136/adc.85.1.73

14. Henes ST, Cummings DM, Hickner RC, et al. Comparison of predictive equations and measured resting energy expenditure among obese youth attending a pediatric healthy weight clinic: one size does not fit all. Nutr Clin Pract. 2013;28(5):617-624. doi: 10.1177/0884533613497237

15. Martincevic I, Mouzaki M. Resting energy expenditure of children and adolescents with nonalcoholic fatty liver disease. JPEN J Parenter Enteral Nutr. 2016. doi: 10.1177/0148607116658761

16. Hofsteenge GH, Chinapaw MJ, Delemarre-van de Waal HA, Weijs PJ. Validation of predictive equations for resting energy expenditure in obese adolescents. Am J Clin Nutr. 2010;91(5):1244-1254. doi: 10.3945/ajcn.2009.28330

17. Steinberg A, Manlhiot C, Cordeiro K, et al. Determining the accuracy of predictive energy expenditure (PREE) equations in severely obese adolescents. Clin Nutr. 2017;36(4):1158-1164. doi: 10.1016/j.clnu.2016.08.006

18. RodrÍguez G, Moreno LA, SarrÍa A, et al. Resting energy expenditure in children and adolescents: agreement between calorimetry and prediction equations. Clin Nutr. 2002;21(3):255-260. doi: 10.1054/clnu.2001.0531

19. Derumeaux-Burel H, Meyer M, Morin L, Boirie Y. Prediction of resting energy expenditure in a large population of obese children. Am J Clin Nutr. 2004;80(6):1544-1550.

20. Chan DF, Li AM, Chan MH, et al. Validation of prediction equations for estimating resting energy expenditure in obese Chinese children. Asia Pac J Clin Nutr. 2009;18(2):251-256. doi: 10.6133/apjcn.2009.18.2.14

21. The Academy of Nutrition and Dietetics. Evidence Analysis Library. Pediatric Weight Management Guidelines. 2007. http://www.adaevidencelibrary.com/

22. Barlow SE, Expert C. Expert committee recommendations regarding the prevention, assessment, and treatment of child and adolescent overweight and obesity: summary report. Pediatrics. 2007;120 Suppl 4:S164-S192. doi: 10.1542/peds.2007-2329C

23. Fullmer S, Benson-Davies S, Earthman CP, et al. Evidence analysis library review of best practices for performing indirect calorimetry in healthy and non-critically ill individuals. J Acad Nutr Diet. 2015;115(9):1417-1446;e1412. doi: 10.1016/j.jand.2015.04.003

24. Bogucki EL. Comment on: Measurement of resting energy expenditure in healthy children. JPEN J Parenter Enteral Nutr. 2009;33(6):729-730. doi: 10.1177/0148607109343608

25. Levine JA, Schleusner SJ, Jensen MD. Energy expenditure of nonexercise activity. Am J Clin Nutr. 2000;72(6):1451-1454.

26. Sujatha T, Shatrugna V, Venkataramana Y, Begum N. Energy expenditure on household, childcare and occupational activities of women from urban poor households. Br J Nutr. 2007;83(05):497-503. doi: 10.1017/s0007114500000635

27. Taguri E, Tanaka S, Ohkawara K, et al. Validity of physical activity indices for adjusting energy expenditure for body size: do the indices depend on body size. J Physiol Antropol. 2010;29(3):109-117. doi: 10.2114/jpa2.29.109

28. Brandi LS, Bertolini R, Janni A, et al. Energy metabolism of thoracic surgical patients in the early postoperative period. Effect of posture. Chest. 1996;109(3):630-637. doi: 10.1378/chest.109.3.630

29. Kashiwazaki H, Dejima Y, Suzuki T. Influence of upper and lower thermoneutral room temperatures (20 degrees C and 25 degrees C) on fasting and post-prandial resting metabolism under different outdoor temperatures. Eur J Clin Nutr. 1990;44(5):405-413.

30. van Ooijen AM, van Marken Lichtenbelt WD, van Steenhoven AA, Westerterp KR. Seasonal changes in metabolic and temperature responses to cold air in humans. Physiol Behav. 2004;82(2-3):545-553. doi: 10.1016/j.physbeh.2004.05.001

31. Belko AZ, Barbieri TF. Effect of meal size and frequency on the thermic effect of food. Nutr Res. 1987;7(3):237-242.

32. Weststrate JA, Weys PJ, Poortvliet EJ, et al. Diurnal variation in postabsorptive resting metabolic rate and diet-induced thermogenesis. Am J Clin Nutr. 1989;50(5):908-914.

33. Bielinski R, Schutz Y, Jequier E. Energy metabolism during the postexercise recovery in man. Am J Clin Nutr. 1985;42(1):69-82.

34. Frankenfield DC, Coleman A. Recovery to resting metabolic state after walking. J Am Diet Assoc. 2009;109(11):1914-1916. doi: 10.1016/j.jada.2009.08.010

35. Clark HD, Hoffer LJ. Reappraisal of the resting metabolic rate of normal young men. Am J Clin Nutr. 1991;53(1):21-26.

36. Liu HY, Lu YF, Chen WJ. Predictive equations for basal metabolic rate in Chinese adults: a cross-validation study. J Am Diet Assoc. 1995;95(12):1403-1408. doi: 10.1016/S0002-8223(95)00369-x

37. Harrell JS, McMurray RG, Baggett CD, et al. Energy costs of physical activities in children and adolescents. Med Sci Sports Exerc. 2005;37(2):329-336. doi: 10.1249/01.mss.0000153115.33762.3f

38. Selz R, Jornayvaz FR, Tappy L, et al. Assessment of hepatic glucose metabolism by indirect calorimetry in combination with a non-invasive technique using naturally enriched C-13 glucose in healthy children and adolescents. Horm Res. 2004;62:142-148. doi: 10.1159/000080070

39. Sun M, Gower BA, Bartolucci AA, et al. A longitudinal study of resting energy expenditure relative to body composition during puberty in African American and white children. Am J Clin Nutr. 2001;73(2):308-315.

40. Wang Z, Heshka S, Zhang K, et al. Resting energy expenditure: systematic organization and critique of prediction methods. Obes Res. 2001;9(5):331-336. doi: 10.1038/oby.2001.42

41. Molnar D, Schutz Y. The effect of obesity, age, puberty and gender on resting metabolic rate in children and adolescents. Eur J Pediatr. 1997;156(5):376-381. doi: 10.1007/s004310050618

42. Wong WW, Butte NF, Ellis KJ, et al. Pubertal African-American girls expend less energy at rest and during physical activity than Caucasian girls. J Clin Endocrinol Metab. 1999;84(3):906-911. doi: 10.1210/jcem.84.3.5517

43. Arslanian SA, Kalhan SC. Protein turnover during puberty in normal children. Am J Physiol. 1996;270(1 Pt 1):E79-E84.

44. Bitar A, Fellmann N, Vernet J, et al. Variations and determinants of energy expenditure as measured by whole-body indirect calorimetry during puberty and adolescence. Am J Clin Nutr. 1999;69(6):1209-1216.

45. Павловская Е.В., Строкова Т.В., Сурков А.Г., и др. Характеристика пищевого статуса и основного обмена у детей различного возраста с избыточной массой тела и ожирением. // Вопросы питания. — 2014. — Т. 83. — № 4. — C. 42—51. [Pavlovskaya EV, Strokova TV, Surkov AG, et al. Age-dependent characteristics of nutritional status and resting metabolism in overweight and obese children. Problems of nutrition. 2014;83(4):42-51. (In Russ.)].

46. Mostazir M, Jeffery A, Hosking J, et al. Evidence for energy conservation during pubertal growth. A 10-year longitudinal study (Early Bird 71). Int J Obes (Lond). 2016;40(11):1619-1626. doi: 10.1038/ijo.2016.158

47. Voss LD, Kirkby J, Metcalf BS, et al. Preventable factors in childhood that lead to insulin resistance, diabetes mellitus and the metabolic syndrome: the early bird diabetes study I. J Pediatr Endocrinol Metab. 2003;16(9):1211-1224. doi: 10.1515/jpem.2003.16.9.1211

48. Cheng HL, Amatoury M, Steinbeck K. Energy expenditure and intake during puberty in healthy nonobese adolescents: a systematic review. Am J Clin Nutr. 2016;104(4):1061-1074. doi: 10.3945/ajcn.115.129205


Supplementary files

Review

For citations:


Okorokov P.L. The role of indirect calorimetry in assessing of resting metabolic rate in obese children. Problems of Endocrinology. 2018;64(2):130-136. https://doi.org/10.14341/probl8754

Views: 6173


ISSN 0375-9660 (Print)
ISSN 2308-1430 (Online)