The interaction between polyphenols and food proteins: prospects for diet therapy of metabolic syndrome and type 2 diabetes mellitus
https://doi.org/10.14341/probl8774
Abstract
The use of minor biologically active components of food (flavonoids) as functional food ingredients for foods for special dietary uses is a promising trend in prevention and treatment of carbohydrate and lipid metabolism disorders resulting from the metabolic syndrome and type 2 diabetes mellitus. Unlike the in vitro studies that are conducted mainly on cell cultures, the results of clinical studies may be influenced by low bioavailability of polyphenols. This fact makes it impossible to reach the beneficial effects of polyphenols in some cases. Thus, the problem of polyphenol bioavailability enhancement is the main direction in producing highly effective specialized anti-diabetic food products. In this review, the interaction between proteins and polyphenolic compounds is discussed from the viewpoint of the potential to protect polyphenols against degradation in the digestive tract, to increase their stability and pharmacological activity compared to those of the conventional compositions. The problems of interactions between polyphenols and food proteins, digestive enzymes and cell transporters in the gastrointestinal tract have not been sufficiently covered in Russian academic publications. The studies focused on the mechanisms of interactions between polyphenols and proteins, considering the corresponding structural changes are of interest for predicting possible changes in their bioavailability. Polyphenol binding to proteins is influenced by the primary structure of a protein macromolecule, the spatial distribution of amino acid residues responsible for polyphenol binding, and some other parameters characterizing the conditions of interactions.
Keywords
About the Authors
Vladimir K. MazoFederal Research Centre of Nutrition, Biotechnology and Food Safety
Russian Federation
PhD, professor
Nikita A. Petrov
Federal Research Centre of Nutrition, Biotechnology and Food Safety
Russian Federation
Varuzhan A. Sarkisyan
Federal Research Centre of Nutrition, Biotechnology and Food Safety
Russian Federation
PhD
Alla A. Kochetkova
Federal Research Centre of Nutrition, Biotechnology and Food Safety
Russian Federation
PhD, professor
References
1. Тараховский Ю.С., Ким Ю.А., Абдрасилов Б.С., Музафаров Е.Н. Флавоноиды: биохимия, биофизика, медицина. — Пущино: Synchrobook; 2013. [Tarahovskiy YuS, Kim YuA, Abdrasilov BS, Muzafarov EN. Flavonoidy: biohimia, biofizika, meditsina. Pushchino: Synchrobook; 2013. (In Russ.)].
2. Тутельян В.А., Шарафетдинов Х.Х., Кочеткова А.А. Теоретические и практические аспекты диетотерапии при сахарном диабете 2-го типа. — М.: Библио-Глобус; 2016. [Tutelyan Va, Sharafetdinov KK, Kochetkova AA. Theoretical and practical aspects of dietary therapy at type 2 diabetes mellitus. Moscow: Biblio-Globus; 2016. (In Russ.)]. doi: 10.18334/9785990927896
3. Растительные источники фитонутриентов для специализированных пищевых продуктов антидиабетического действия. / Под ред. Тутельяна В.А., Киселевой Т.Л., Кочетковой А.А. — М.: Библио-Глобус; 2016. [Tutelyan VA, Kiseleva TL, Kochetkova AA, Editors. Plant sources of phytonutrients for foods for special uses with antidiabetic action. Moscow: Biblio-Globus; 2016. (In Russ.)].
4. Lewandowska U, Szewczyk K, Hrabec E, et al. Overview of metabolism and bioavailability enhancement of polyphenols. J Agric Food Chem. 2013;61(50):12183-12199. doi: 10.1021/jf404439b
5. Bohn T. Dietary factors affecting polyphenol bioavailability. Nutr Rev. 2014;72(7):429-452. doi: 10.1111/nure.12114
6. Berry SEE, Tydeman EA, Lewis HB, et al. Manipulation of lipid bioaccessibility of almond seeds influences postprandial lipemia in healthy human subjects. Am J Clin Nutr. 2008;88(4):922-929. doi: 10.1093/ajcn/88.4.922
7. Rein MJ, Renouf M, Cruz-Hernandez C, et al. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy. Br J Clin Pharmacol. 2013;75(3):588-602.doi: 10.1111/j.1365-2125.2012.04425.x
8. Neilson AP, Ferruzzi MG. Influence of formulation and processing on absorption and metabolism of Flavan-3-ols from tea and cocoa. Annu Rev Food Sci Technol. 2011;2:125-151.doi: 10.1146/annurev-food-022510-133725
9. Bandyopadhyay P, Ghosh AK, Ghosh C. Recent developments on polyphenol-protein interactions: effects on tea and coffee taste, antioxidant properties and the digestive system. Food Funct. 2012;3(6):592-605. doi: 10.1039/c2fo00006g
10. Poncet-Legrand C, Gautier C, Cheynier V, Imberty A. Interactions between flavan-3-ols and poly(l-proline) studied by isothermal titration calorimetry: effect of the tannin structure. J Agric Food Chem. 2007;55(22):9235-9240. doi: 10.1021/jf071297o
11. Wang X, Ho Ct, Huang Q. Investigation of adsorption behavior of (–)–epigallocatechin gallate on bovine serum albumin surface using quartz crystal microbalance with dissipation monitoring. J Agric Food Chem. 2007;55(13):4987-4992. doi: 10.1021/jf070590l
12. Wang Sh, Liu Ff, Dong XY, Sun Y. Thermodynamic analysis of the molecular interactions between amyloid beta-peptide 42 and (–)–epigallocatechin-3-gallate. J Phys Chem B. 2010;114(35):11576-11583. doi: 10.1021/jp1001435
13. CN NS-K, St-Louis C, Beauregard M, et al. Resveratrol binding to human serum albumin. J Biomol Struct Dyn. 2006;24(3):277-283.doi: 10.1080/07391102.2006.10507120
14. Rawel HM, Rohn S, Kroll J. Influence of a sugar moiety (rhamnosylglucoside) at 3-o position on the reactivity of quercetin with whey proteins. Int J Biol Macromol. 2003;32(3-5):109-120.doi: 10.1016/S0141-8130(03)00044-8
15. Rawel HM, Rohn S, Kruse H-P, Kroll J. Structural changes induced in bovine serum albumin by covalent attachment of chlorogenic acid. Food Chem. 2002;78(4):443-455.doi: 10.1016/s0308-8146(02)00155-3
16. Canon F, Ballivian R, Chirot F, et al. Folding of a salivary intrinsically disordered protein upon binding to tannins. J Am Chem Soc. 2011;133(20):7847-7852. doi: 10.1021/ja200534f
17. Victor De F, Nuno M. Protein/polyphenol interactions: past and present contributions. Mechanisms of astringency perception. Curr Org Chem. 2012;16(6):724-746. doi: 10.2174/138527212799958002
18. Kanakis CD, Hasni I, Bourassa P, et al. Milk beta-lactoglobulin complexes with tea polyphenols. Food Chem. 2011;127(3):1046-1055. doi: 10.1016/j.foodchem.2011.01.079
19. Hasni I, Bourassa P, Hamdani S, et al. Interaction of milk α- and b-caseins with tea polyphenols. Food Chem. 2011;126(2):630-639.doi: 10.1016/j.foodchem.2010.11.087
20. Soares S, Mateus N, Freitas V. Interaction of different polyphenols with bovine serum albumin (BSA) and human salivary alpha-amylase (HSA) by fluorescence quenching. J Agric Food Chem. 2007;55(16):6726-6735. doi: 10.1021/jf070905x
21. Abe I, Seki T, Umehara K, et al. Green tea polyphenols: novel and potent inhibitors of squalene epoxidase. Biochem Biophys Res Commun. 2000;268(3):767-771. doi: 10.1006/bbrc.2000.2217
22. Bertoldi M, Gonsalvi M, Voltattorni CB. Green tea polyphenols: novel irreversible inhibitors of dopa decarboxylase. Biochem Biophys Res Commun. 2001;284(1):90-93. doi: 10.1006/bbrc.2001.4945
23. Ghosh KS, Maiti TK, Dasgupta S. Green tea polyphenols as inhibitors of ribonuclease A. Biochem Biophys Res Commun. 2004; 325(3):807-811. doi: 10.1016/j.bbrc.2004.10.116
24. Huang H, Kwok K-C, Liang H. Effects of tea polyphenols on the activities of soybean trypsin inhibitors and trypsin. J Sci Food Agric. 2004;84(2):121-126. doi: 10.1002/jsfa.1610
25. Williams LK, Li C, Withers SG, Brayer GD. Order and disorder: differential structural impacts of myricetin and ethyl caffeate on human amylase, an antidiabetic target. J Med Chem. 2012; 55(22):10177-10186. doi: 10.1021/jm301273u
26. Yoshikawa M, Shimoda H, Nishida N, et al. Salacia reticulata and its polyphenolic constituents with lipase inhibitory and lipolytic activities have mild antiobesity effects in rats. J Nutr. 2002; 132(7):1819-1824. doi: 10.1093/jn/132.7.1819
27. Sergent T, Vanderstraeten J, Winand J, et al. Phenolic compounds and plant extracts as potential natural anti-obesity substances. Food Chem. 2012;135(1):68-73. doi: 10.1016/j.foodchem.2012.04.074
28. Ivanov SA, Nomura K, Malfanov IL, et al. Isolation of a novel catechin from bergenia rhizomes that has pronounced lipase-inhibiting and antioxidative properties. Fitoterapia. 2011;82(2):212-218.doi: 10.1016/j.fitote.2010.09.013
29. Nakai M, Fukui Y, Asami S, et al. Inhibitory effects of oolong tea polyphenols on pancreatic lipase in vitro. J Agric Food Chem. 2005;53(11):4593-4598. doi: 10.1021/jf047814+
30. Wu X, He W, Yao L, et al. Characterization of binding interactions of (–)–epigallocatechin-3-gallate from green tea and lipase. J Agric Food Chem. 2013;61(37):8829-8835. doi: 10.1021/jf401779z
31. Lo Piparo E, Scheib H, Frei N, et al. Flavonoids for controlling starch digestion: structural requirements for inhibiting human alpha-amylase. J Med Chem. 2008;51(12):3555-3561.doi: 10.1021/jm800115x
32. Raghavendra MP, Kumar PR, Prakash V. Mechanism of inhibition of rice bran lipase by polyphenols: a case study with chlorogenic acid and caffeic acid. J Food Sci. 2007;72(8):E412-E419.doi: 10.1111/j.1750-3841.2007.00488.x
33. Naz S, Siddiqi R, Dew TP, Williamson G. Epigallocatechin-3-gallate inhibits lactase but is alleviated by salivary proline-rich proteins. J Agric Food Chem. 2011;59(6):2734-2738. doi: 10.1021/jf103072z
34. Castro-Acosta ML, Smith L, Miller RJ, et al. Drinks containing anthocyanin-rich blackcurrant extract decrease postprandial blood glucose, insulin and incretin concentrations. J Nutr Biochem. 2016;38:154-161. doi: 10.1016/j.jnutbio.2016.09.002
35. Guasch L, Sala E, Ojeda MJ, et al. Identification of novel human dipeptidyl Peptidase-IV inhibitors of natural origin (Part II): in silico prediction in antidiabetic extracts. Plos One. 2012;7(9):E44972.doi: 10.1371/journal.pone.0044972
36. Drucker DJ. The biology of incretin hormones. Cell Metab. 2006; 3(3):153-165. doi: 10.1016/j.cmet.2006.01.004
37. Guasch L, Ojeda MJ, Gonzalez-Abuin N, et al. Identification of novel human dipeptidyl peptidase-IV inhibitors of natural origin (Part I): virtual screening and activity assays. Plos One. 2012;7(9):E44971. doi: 10.1371/journal.pone.0044971
38. Fan J, Johnson MH, Lila MA, et al. Berry and citrus phenolic compounds inhibit dipeptidyl peptidase IV: implications in diabetes management. Evid Based Complement Alternat Med. 2013;2013: 479505. doi: 10.1155/2013/479505
39. Castro-Acosta ML, Stone SG, Mok JE, et al. Apple and blackcurrant polyphenol-rich drinks decrease postprandial glucose, insulin and incretin response to high-carbohydrate meal in healthy men and women. J Nutr Biochem. 2017;49:53-62.doi: 10.1016/j.jnutbio.2017.07.013
40. Brand W, Van der Wel PA, Rein MJ, et al. Metabolism and transport of the citrus flavonoid hesperetin in CACO-2 cell onolayers. Drug Metab Dispos. 2008;36(9):1794-1802.doi: 10.1124/dmd.107.019943
41. Englund G, Rorsman F, Ronnblom A, et al. Regional levels of drug transporters along the human intestinal tract: co-expression of ABC and SLC transporters and comparison with CACO-2 cells. Eur J Pharm Sci. 2006;29(3-4):269-277.doi: 10.1016/j.ejps.2006.04.010
42. Del Rio D, Borges G, Crozier A. Berry flavonoids and phenolics: bioavailability and evidence of protective effects. Br J Nutr. 2010;104 Suppl 3:S67-S90. doi: 10.1017/s0007114510003958
43. Manach C, Donovan JL. Invited review. Free Radic Res. 2004;38(8): 771-785. doi: 10.1080/10715760410001727858
44. Viskupičová J, Ondrejovič M, Šturdík E. Bioavailability and metabolism of flavonoids. J Food Nutr Res. 2008;47(4):151-162.
45. Morris ME, Zhang S. Flavonoid-drug interactions: effects of flavonoids on ABC transporters. Life Sci. 2006;78(18):2116-2130.doi: 10.1016/j.lfs.2005.12.003
46. Scheepens A, Tan K, Paxton JW. Improving the oral bioavailability of beneficial polyphenols through designed synergies. Genes Nutr. 2010;5(1):75-87. doi: 10.1007/s12263-009-0148-z
47. Hong J, Lambert JD, Lee S-H, et al. Involvement of multidrug resistance-associated proteins in regulating cellular levels of (–)–epigallocatechin-3-gallate and its methyl metabolites. Biochem Biophys Res Commun. 2003;310(1):222-227.doi: 10.1016/j.bbrc.2003.09.007
48. Stalmach A, Edwards CA, Wightman JD, Crozier A. Colonic catabolism of dietary phenolic and polyphenolic compounds from concord grape juice. Food Funct. 2013;4(1):52-62.doi: 10.1039/c2fo30151b
49. Eid HM, Wright ML, Anil Kumar NV, et al. Significance of microbiota in obesity and metabolic diseases and the modulatory potential by medicinal plant and food ingredients. Front Pharmacol. 2017;8:387. doi: 10.3389/fphar.2017.00387
50. Roowi S, Stalmach A, Mullen W, et al. Green tea flavan-3-ols: colonic degradation and urinary excretion of catabolites by humans. J Agric Food Chem. 2010;58(2):1296-1304. doi: 10.1021/jf9032975
51. Aura A-M. Microbial metabolism of dietary phenolic compounds in the colon. Phytochem Rev. 2008;7(3):407-429.doi: 10.1007/s11101-008-9095-3
52. Simmering R, Pforte H, Jacobasch G, Blaut M. The growth of the elavonoid-degrading intestinal bacterium, eubacterium ramulus, is stimulated by dietary flavonoids in vivo. Fems Microbiol Ecol. 2002;40(3):243-248. doi: 10.1111/j.1574-6941.2002.tb00957.x
53. Han Y, Haraguchi T, Iwanaga S, et al. Consumption of some polyphenols reduces fecal deoxycholic acid and lithocholic acid, the secondary bile acids of risk factors of colon cancer. J Agric Food Chem. 2009;57(18):8587-8590. doi: 10.1021/jf900393k
54. Ajazuddin, Saraf S. Applications of novel drug delivery system for herbal formulations. Fitoterapia. 2010;81(7):680-689.doi: 10.1016/j.fitote.2010.05.001
55. Gonzales GB, Smagghe G, Grootaert C, et al. Flavonoid interactions during digestion, absorption, distribution and metabolism: a sequential structure-activity/property relationship-based approach in the study of bioavailability and bioactivity. Drug Metab Rev. 2015;47(2):175-190. doi: 10.3109/03602532.2014.1003649
Supplementary files
Review
For citations:
Mazo V.K., Petrov N.A., Sarkisyan V.A., Kochetkova A.A. The interaction between polyphenols and food proteins: prospects for diet therapy of metabolic syndrome and type 2 diabetes mellitus. Problems of Endocrinology. 2018;64(4):252-257. https://doi.org/10.14341/probl8774

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).