Preview

Problems of Endocrinology

Advanced search

Neuromediators and neuropeptides: the biomarkers for metabolic disturbances in obesity

https://doi.org/10.14341/probl9466

Abstract

The role of biogenic amines (serotonin, dopamine) and neuropeptides in regulation of energy homeostasis of the organism and their role as markers of metabolic disorders in obesity (Ob) in animal experimental models and in clinical observations is reviewed. The energy homeostasis of the body is controlled via competition of alternative regulatory mechanisms that are mainly localized in the hypothalamus (HT). At the level of aminergic regulation, these are the serotonin and dopamine systems; at the level of the peptidergic system, these are NPY/AgRP and POMC/CART-related peptides. Opioid and cannabinoid receptors and their endogenous ligands closely linked to peptidergic and aminergic regulatory subsystems of the central nervous system ensure the connection between the «metabolic» regulation loop responding to a deficit or excess of energy substrates the «hedonistic» one associated with the body’s perception of pleasure from food consumption. The response of peptidergic and aminergic HT neurons to food and hormonal signals originating from the outside is based on the interaction between the corresponding ligands and G-protein-coupled receptors specific to them. Disruption or breakdown of the central mechanisms is considered to be one of the main pathogenetic factors of obesity and, simultaneously, the reason why reducing diet therapy proves inefficient or unstable. Partial permeability of the blood—brain barrier for neuropeptides makes them an attractive biomarker in the diagnosis of metabolic abnormalities in obese patients.

About the Authors

Ivan V. Gmoshinski
http://www.ion.ru

Federal Research Centre of Nutrition, Biotechnology and food safety


Russian Federation

PhD



Sergey A. Apryatin
http://www.ion.ru

Federal Research Centre of Nutrition, Biotechnology and food safety


Russian Federation

PhD



Vladimir A. Shipelin
http://www.ion.ru

Federal Research Centre of Nutrition, Biotechnology and food safety


Russian Federation

MD, PhD


Competing Interests:

.



Dmitriy B. Nikitjuk
http://www.ion.ru

Federal Research Centre of Nutrition, Biotechnology and food safety


Russian Federation

MD, PhD, Profesor



References

1. Лапик И.А., Гаппарова К.М., Чехонина Ю.Г., и др. Современные тенденции развития нутригеномики ожирения. // Вопросы Питания. — 2016. — Т. 85. — № 6. — С. 6—13. [Lapik IA, Gapparova KM, Chehonina JG, et al. Current trends in nutrigenomics of obesity. Problems of Nutrition. 2016;85(6):6-13. (In Russ.)].

2. Bojanowska E, Ciosek J. Can we selectively reduce appetite for energy-dense foods? An overview of pharmacological strategies for modification food preference behavior. Curr Neuropharmacol. 2016;14(2):118-142. doi: 10.2174/1570159x14666151109103147

3. Hsu TM, Hahn JD, Konanur VR, et al. Hippocampus ghrelin signaling mediates appetite through lateral hypothalamic orexin pathways. Elife. 2015;4. doi: 10.7554/elife.11190

4. Messina G, Valenzano A, Moscatelli F, et al. Role of autonomic nervous system and orexinergic system on adipose tissue. Front Physiol. 2017;8:137. doi: 10.3389/fphys.2017.00137

5. Londraville RL, Prokop JW, Duff RJ, et al. On the molecular evolution of leptin, leptin receptor, and endospanin. Front Endocrinol (Lausanne). 2017;8:58. doi: 10.3389/fendo.2017.00058

6. Messina G, Dalia C, Tafuri D, et al. Orexin-a controls sympathetic activity and eating behavior. Front Psychol. 2014;5:997.doi: 10.3389/fpsyg.2014.00997

7. Suzuki K, Jayasena CN, Bloom SR. Obesity and appetite control. Exp Diabetes Res. 2012;2012:824305. Doi: 10.1155/2012/824305d

8. Burke LK, Heisler LK. 5-Hydroxytryptamine medications for the treatment of obesity. J Neuroendocrinol. 2015;27(6):389-398.doi: 10.1111/jne.12287

9. Herrera CP, Smith K, Atkinson F, et al. High-glycaemic index and -glycaemic load meals increase the availability of tryptophan in healthy volunteers. Br J Nutr. 2011;105(11):1601-1606.doi: 10.1017/s0007114510005192

10. Wu CH, Chang CS, Yang YK, et al. Comparison of brain serotonin transporter using [I-123]-ADAM between obese and non-obese young adults without an eating disorder. Plos One. 2017; 12(2):E0170886. doi: 10.1371/journal.pone.0170886

11. Shabbir F, Patel A, Mattison C, et al. Effect of diet on serotonergic neurotransmission in depression. Neurochem Int. 2013;62(3):324-329. doi: 10.1016/j.neuint.2012.12.014

12. Shabbir F, Patel A, Mattison C, et al. Effect of iet on serotonergic neurotransmission in depression. Neurochem Int. 2013;62(3):324-329. Doi: 10.1016/j.neuint.2012.12.014

13. Vucetic Z, Carlin JL, Totoki K, Reyes TM. Epigenetic dysregulation of the dopamine system in diet-induced obesity. J Neurochem. 2012;120(6):891-898. doi: 10.1111/j.1471-4159.2012.07649.x

14. Volkow ND, Wang GJ, Baler RD. Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci. 2011;15(1):37-46. doi: 10.1016/j.tics.2010.11.001

15. Rada P, Bocarsly ME, Barson JR, et al. Reduced accumbens dopamine in sprague-dawley rats prone to overeating a fat-rich diet. Physiol Behav. 2010;101(3):394-400. doi: 10.1016/j.physbeh. 2010.07.005

16. Rada P, Avena NM, Hoebel BG. Daily bingeing on sugar repeatedly releases dopamine in the accumbens shell. Neuroscience. 2005; 134(3):737-744. doi: 10.1016/j.neuroscience.2005.04.043

17. Lee AK, Mojtahed-Jaberi M, Kyriakou T, et al. Effect of high-fat feeding on expression of genes controlling availability of dopamine in mouse hypothalamus. Nutrition. 2010;26(4):411-422.doi: 10.1016/j.nut.2009.05.007

18. Johnson PM, Kenny PJ. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci. 2010;13(5):635-641. doi: 10.1038/nn.2519

19. Geiger BM, Haburcak M, Avena NM, et al. Deficits of mesolimbic dopamine neurotransmission in rat dietary obesity. Neuroscience. 2009;159(4):1193-1199. doi: 10.1016/j.neuroscience.2009.02.007

20. Alsio J, Olszewski PK, Norback AH, et al. Dopamine D1 receptor gene expression decreases in the nucleus accumbens upon long-term exposure to palatable food and differs depending on diet-induced obesity phenotype in rats. Neuroscience. 2010;171(3):779-787. doii: 10.1016/j.neuroscience.2010.09.046

21. Naef L, Pitman KA, Borgland SL. Mesolimbic dopamine and its neuromodulators in obesity and binge eating. CNS Spectr. 2015; 20(6):574-583. doi: 10.1017/s1092852915000693

22. Geloneze B, De Lima-Junior JC, Velloso LA. Glucagon-like peptide-1 receptor agonists (GLP-1ras) in the brain-adipocyte axis. Drugs. 2017;77(5):493-503. doi: 10.1007/s40265-017-0706-4

23. Blasiak A, Gundlach AL, Hess G, Lewandowski MH. Interactions of circadian rhythmicity, stress and orexigenic neuropeptide systems: implications for food intake control. Front Neurosci. 2017;11:127. doi: 10.3389/fnins.2017.00127

24. Nakajima K, Cui Z, Li C, et al. Gs-Coupled GPCR signalling in AGRP neurons triggers sustained increase in food intake. Nat Commun. 2016;7:10268. doi: 10.1038/ncomms10268

25. Шевченко Ю.С., Мамонтова Т.В., Баранова А.Ф., и др. Влияние изменения образа жизни молодых людей с избыточной массой тела на уровень контролирующих пищевое поведение нейропептидов, инсулинорезистентность и уровень хронического системного воспаления. // Медицинские Новости Грузии. — 2015. — № 11. — С. 50—57. [Shevchenko YS, Mamontova TV, Baranova AF, et al. Changes in lifestyle factors affect the levels of neuropeptides, involved in the control of eating behavior, insulin resistance and level of chronic systemic inflammation in young overweight persons. Georgian Med News. 2015;(11):50-57. (In Russ.)].

26. Vahatalo LH, Ruohonen ST, Makela S, et al. Neuropeptide Y in the noradrenergic neurones induces obesity and inhibits sympathetic tone in mice. Acta Physiol (Oxf). 2015;213(4):902-919.doi: 10.1111/apha.12436

27. Kim YJ, Bi S. Knockdown of neuropeptide Y in the dorsomedial hypothalamus reverses high-fat diet-induced obesity and impaired glucose tolerance in rats. Am J Physiol Regul Integr Comp Physiol. 2016;310(2):R134-142. doi: 10.1152/ajpregu.00174.2015

28. Vahatalo LH, Ruohonen ST, Ailanen L, Savontaus E. Neuropeptide Y in noradrenergic neurons induces obesity in transgenic mouse models. Neuropeptides. 2016;55:31-37.doi: 10.1016/j.npep.2015.11.088

29. Wei W, Pham K, Gammons JW, et al. Diet composition, not calorie intake, rapidly alters intrinsic excitability of hypothalamic AgRP/NPY neurons in mice. Sci Rep. 2015;5:16810. doi: 10.1038/srep16810

30. Cifani C, Micioni Di Bonaventura MV, Pucci M, et al. Regulation of hypothalamic neuropeptides gene expression in diet induced obesity resistant rats: possible targets for obesity prediction? Front Neurosci. 2015;9:187. doi: 10.3389/fnins.2015.00187

31. Tang HN, Man XF, Liu YQ, et al. Dose-dependent effects of neuropeptide Y on the regulation of preadipocyte proliferation and adipocyte lipid synthesis via the PPARgamma pathways. Endocr J. 2015;62(9):835-846. doi: 10.1507/endocrj.EJ15-0133

32. Cote I, Sakarya Y, Kirichenko N, et al. Activation of the central melanocortin system chronically reduces body mass without the necessity of long-term caloric restriction. Can J Physiol Pharmacol. 2017;95(2):206-214. doi: 10.1139/cjpp-2016-0290

33. Butler AA, Girardet C, Mavrikaki M, et al. A Life without hunger: the Ups (and Downs) to modulating Melanocortin-3 receptor signaling. Front Neurosci. 2017;11:128. doi: 10.3389/fnins.2017.00128

34. Girardet C, Mavrikaki MM, Stevens JR, et al. Melanocortin-3 receptors expressed in Nkx2.1(+ve) neurons are sufficient for controlling appetitive responses to hypocaloric conditioning. Sci Rep. 2017;7:44444. doi: 10.1038/srep44444

35. Koch M, Varela L, Kim JG, et al. Hypothalamic POMC neurons promote cannabinoid-induced feeding. Nature. 2015;519(7541):45-50. doi: 10.1038/nature14260

36. Mendez IA, Ostlund SB, Maidment NT, Murphy NP. Involvement of endogenous enkephalins and beta-endorphin in feeding and diet-induced obesity. Neuropsychopharmacology. 2015;40(9):2103-2112. doi: 10.1038/npp.2015.67

37. Clemmensen C, Finan B, Fischer K, et al. Dual melanocortin-4 receptor and GLP-1 receptor agonism amplifies metabolic benefits in diet-induced obese mice. EMBO Mol Med. 2015;7(3):288-298.doi: 10.15252/emmm.201404508

38. Cui J, Ding Y, Chen S, et al. Disruption of Gpr45 causes reduced hypothalamic POMC expression and obesity. J Clin Invest. 2016; 126(9):3192-3206. doi: 10.1172/JCI85676

39. Mountjoy KG. Pro-Opiomelanocortin (POMC) neurones, POMC-derived peptides, melanocortin receptors and obesity: how understanding of this system has changed over the last decade. J Neuroendocrinol. 2015;27(6):406-418. doi: 10.1111/jne.12285

40. Бакланов А.В., Бажан Н.М. Изучение относительной экспрессии генов, контролирующих обмен глюкозы в печени, у мышей при развитии меланокортинового ожирения. // Российский физиологический журнал им. И.М. Сеченова. — 2015. — Т. 101. — № 6. — С. 689—699. [Baklanov AV, Bazhan NM. Study relative expression of genes that control glucose metabolism in the liver in mice with development of melanocortin obesity. Russian journal of physiology. 2015;101(6):689-699 (In Russ.)].

41. Cyr NE, Steger JS, Toorie AM, et al. Central Sirt1 regulates body weight and energy expenditure along with the POMC-derived peptide alpha-MSH and the processing enzyme CPE production in diet-induced obese male rats. Endocrinology. 2015;156(3):961-974.doi: 10.1210/en.2014-1970

42. Ornellas F, Souza-Mello V, Mandarim-de-Lacerda CA, Aguila MB. Combined parental obesity augments single-parent obesity effects on hypothalamus inflammation, leptin signaling (JAK/STAT), hyperphagia, and obesity in the adult mice offspring. Physiol Behav. 2016;153:47-55. doi: 10.1016/j.physbeh.2015.10.019

43. Jeong JK, Kim JG, Kim HR, et al. A role of central NELL2 in the regulation of feeding behavior in rats. Mol Cells. 2017;40(3):186-194. doi: 10.14348/molcells.2017.2278

44. Vehapoglu A, Turkmen S, Terzioglu S. Alpha-melanocyte-stimulating hormone and agouti-related protein: do they play a role in appetite regulation in childhood obesity? J Clin Res Pediatr Endocrinol. 2016;8(1):40-47. doi: 10.4274/jcrpe.2136

45. Messina G, Viggiano A, Tafuri D, et al. Role of orexin in obese patients in the intensive care unit. J Anesth Clin Res. 2014;5(3):395.doi: 10.4172/2155-6148.1000395

46. Morello G, Imperatore R, Palomba L, et al. Orexin-A represses satiety-inducing POMC neurons and contributes to obesity VIA stimulation of endocannabinoid signaling. Proc Natl Acad Sci U S A. 2016;113(17):4759-4764. doi: 10.1073/pnas.152130411

47. Nixon JP, Mavanji V, Butterick TA, et al. Sleep disorders, obesity, and aging: the role of orexin. Ageing Res Rev. 2015;20:63-73.doi: 10.1016/j.arr.2014.11.001

48. Nebigil CG. Prokineticin is a new linker between obesity and cardiovascular diseases. Front Cardiovasc Med. 2017;4:20.doi: 10.3389/fcvm.2017.00020

49. Gardiner JV, Bataveljic A, Patel NA, et al. Prokineticin 2 is a hypothalamic neuropeptide that potently inhibits food intake. Diabetes. 2010;59(2):397-406. doi: 10.2337/db09-119

50. Sarfati J, Guiochon-Mantel A, Rondard P, et al. A comparative phenotypic study of kallmann syndrome patients carrying monoallelic and biallelic mutations in the prokineticin 2 or prokineticin receptor 2 genes. J Clin Endocrinol Metab. 2010;95(2):659-669.doi: 10.1210/jc.2009-0843

51. Beale K, Gardiner JV, Bewick GA, et al. Peripheral administration of prokineticin 2 potently reduces food intake and body weight in mice via the brainstem. Br J Pharmacol. 2013;168(2):403-410.doi: 10.1111/j.1476-5381.2012.02191.x

52. Fang P, Yu M, Gu X, et al. Circulating galanin and galanin like peptide concentrations are correlated with increased triglyceride concentration in obese patients. Clin Chim Acta. 2016;461:126-129.doi: 10.1016/j.cca.2016.07.019

53. Yang JA, Yasrebi A, Snyder M, Roepke TA. The interaction of fasting, caloric restriction, and diet-induced obesity with 17beta-estradiol on the expression of KNDy neuropeptides and their receptors in the female mouse. Mol Cell Endocrinol. 2016;437:35-50.doi: 10.1016/j.mce.2016.08.008

54. Yan Y, Tian L, Xiang X, et al. Chronic gastric electrical stimulation leads to weight loss via modulating multiple tissue neuropeptide Y, orexin, alpha-melanocyte-stimulating hormone and oxytocin in obese rats. Scand J Gastroenterol. 2016;51(2):157-167.doi: 10.3109/00365521.2015.1069391

55. Sekar R, Wang L, Chow BK. Central control of feeding behavior by the secretin, PACAP, and glucagon family of peptides. Front Endocrinol (Lausanne). 2017;8:18. doi: 10.3389/fendo.2017.00018

56. Shibue K, Yamane S, Harada N, et al. Fatty acid-binding protein 5 regulates diet-induced obesity via GIP secretion from enteroendocrine K cells in response to fat ingestion. Am J Physiol Endocrinol Metab. 2015;308(7):E583-591. doi: 10.1152/ajpendo.00543.2014

57. Vu JP, Larauche M, Flores M, et al. Regulation of appetite, body composition, and metabolic hormones by vasoactive intestinal polypeptide (VIP). J Mol Neurosci. 2015;56(2):377-387.doi: 10.1007/s12031-015-0556-z

58. Martinez VG, O’Driscoll L. Neuromedin U: a multifunctional neuropeptide with pleiotropic roles. Clin Chem. 2015;61(3):471-482.doi: 10.1373/clinchem.2014.231753

59. Li J, Song J, Zaytseva YY, et al. An obligatory role for neurotensin in high-fat-diet-induced obesity. Nature. 2016;533(7603):411-415.doi: 10.1038/nature17662

60. Sam AH, Sleeth ML, Thomas EL, et al. Circulating pancreatic polypeptide concentrations predict visceral and liver fat content. J Clin Endocrinol Metab. 2015;100(3):1048-1052. doi: 10.1210/jc.2014-3450

61. Cabral A, Lopez Soto EJ, Epelbaum J, Perello M. Is ghrelin synthesized in the central nervous system? Int J Mol Sci. 2017;18(3).doi: 10.3390/ijms18030638

62. Collden G, Tschop MH, Muller TD. Therapeutic potential of targeting the ghrelin pathway. Int J Mol Sci. 2017;18(4).doi: 10.3390/ijms18040798

63. Zigman JM, Jones JE, Lee CE, et al. Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol. 2006;494(3):528-548. doi: 10.1002/cne.20823

64. Kohno D, Sone H, Minokoshi Y, Yada T. Ghrelin raises [Ca2+]i via AMPK in hypothalamic arcuate nucleus NPY neurons. Biochem Biophys Res Commun. 2008;366(2):388-392.doi: 10.1016/j.bbrc.2007.11.166

65. Yang SY, Lin SL, Chen YM, et al. A low-salt diet increases the expression of renal sirtuin 1 through activation of the ghrelin receptor in rats. Sci Rep. 2016;6:32787. doi: 10.1038/srep32787

66. Yasrebi A, Hsieh A, Mamounis KJ, et al. Differential gene regulation of GHSR signaling pathway in the arcuate nucleus and NPY neurons by fasting, diet-induced obesity, and 17beta-estradiol. Mol Cell Endocrinol. 2016;422:42-56. doi: 10.1016/j.mce.2015.11.007

67. Deck CA, Honeycutt JL, Cheung E, et al. Assessing the functional role of leptin in energy homeostasis and the stress response in vertebrates. Front Endocrinol (Lausanne). 2017;8:63.doi: 10.3389/fendo.2017.00063

68. Schaab M, Kratzsch J. The soluble leptin receptor. Best Pract Res Clin Endocrinol Metab. 2015;29(5):661-670.doi: 10.1016/j.beem.2015.08.002

69. Pedroso JA, Silveira MA, Lima LB, et al. Changes in leptin signaling by SOCS3 modulate fasting-induced hyperphagia and weight regain in mice. Endocrinology. 2016;157(10):3901-3914.doi: 10.1210/en.2016-1038

70. Page-Wilson G, Meece K, White A, et al. Proopiomelanocortin, agouti-related protein, and leptin in human cerebrospinal fluid: correlations with body weight and adiposity. Am J Physiol Endocrinol Metab. 2015;309(5):E458-E465.doi: 10.1152/ajpendo.00206.2015


Supplementary files

1. Рисунок 1
Subject
Type Исследовательские инструменты
View (178KB)    
Indexing metadata ▾
2. Рисунок 1
Subject
Type Исследовательские инструменты
Download (90KB)    
Indexing metadata ▾
3. Scheme of the most significant effects of neurotransmitters and neuropeptides in the control of body weight and the development of obesity.
Subject
Type Исследовательские инструменты
View (143KB)    
Indexing metadata ▾

Review

For citations:


Gmoshinski I.V., Apryatin S.A., Shipelin V.A., Nikitjuk D.B. Neuromediators and neuropeptides: the biomarkers for metabolic disturbances in obesity. Problems of Endocrinology. 2018;64(4):258-269. https://doi.org/10.14341/probl9466

Views: 12301


ISSN 0375-9660 (Print)
ISSN 2308-1430 (Online)