Differential diagnosis of morphological forms of congenital hyperinsulinism using [18F]-DOPA PET/CT
https://doi.org/10.14341/probl9726
Abstract
Congenital hyperinsulinism (CHI) is caused by insulin hyperproduction by β-pancreatic cells. CHI is associated with high risk of complications of chronic hypoglycemia, and therefore timely diagnosis of the disease and immediate initiation of therapy is a top-priority task. The choice of treatment tactics largely depends on the morphological form of the disease. Morphological form cannot be established based on clinical and laboratory presentation of the disease, ultrasound, MRI, computed and positron emission tomography (PET) with [18F]-fluorodeoxyglucose. Calcium stimulation test and percutaneous transhepatic blood sampling from the portal vein were previously used for differential diagnosis, but the results provided by these invasive studies are imprecise. At present, preoperative differential diagnosis of diffuse and focal forms of CHI is based on the data of genetic testing and radionuclide diagnosis ([18F]-DOPA PET). The article presents the first results of the use of [18F]-DOPA PET in CHI patients in the Russian Federation. Radionuclide study was performed in 17 patients with pharmacoresistant CHI followed by comparative analysis of the results of 18F-FDG PET/CT and histological picture of intraoperative pancreatic tissue samples, which is known as the gold standard for the differential diagnosis of HI histological forms.
About the Authors
Diliara N. GubaevaEndocrinology Research Certre
Russian Federation
MD
Maria A. Melikyan
Endocrinology Research Certre
Russian Federation
MD, PhD, leading research associate
Daria V. Ryzhkova
Almazov National Medical Research Center
Russian Federation
MD, PhD, Professor
Lubov B. Mitrofanova
Almazov National Medical Research Center
Russian Federation
MD, PhD
Irina L. Nikitina
Almazov National Medical Research Center
Russian Federation
MD, PhD, Professor
References
1. Otonkoski T, Ammala C, Huopio H, et al. A point mutation inactivating the sulfonylurea receptor causes the severe form of persistent hyperinsulinemic hypoglycemia of infancy in Finland. Diabetes. 1999;48(2):408-415. doi: https://doi.org/10.2337/diabetes.48.2.408
2. De Leon DD, Stanley CA. Mechanisms of disease: advances in diagnosis and treatment of hyperinsulinism in neonates. Nat Clin Pract Endocrinol Metab. 2007;3(1):57-68. doi: https://doi.org/10.1038/ncpendmet0368
3. Dunne MJ, Kane C, Shepherd RM, et l. Familial persistent hyperinsulinemic hypoglycemia of infancy and mutations in the sulfonylurea receptor. N Engl J Med. 1997;336(10):703-706. doi: https://doi.org/10.1056/nejm199703063361005
4. De Lonlay P, Fournet J-C, Touati G, et al. Heterogeneity of persistent hyperinsulinaemic hypoglycaemia. A series of 175 cases. Eur J Pediatr. 2001;161(1):37-48. doi: https://doi.org/10.1007/s004310100847
5. Verkarre V, Fournet JC, De Lonlay P, et al. Paternal mutation of the sulfonylurea receptor (Sur1) gene and maternal loss of 11p15 imprinted genes lead to persistent hyperinsulinism in focal adenomatous hyperplasia. J Clin Invest. 1998;102(7):1286-1291. doi: https://doi.org/10.1172/jci4495
6. Yorifuji T. Congenital hyperinsulinism: current status and future perspectives. Ann Pediatr Endocrinol Metab. 2014;19(2):57-68. doi: https://doi.org/10.6065/apem.2014.19.2.57
7. James C, Kapoor RR, Ismail D, Hussain K. The genetic basis of congenital hyperinsulinism. J Med Genet. 2009;46(5):289-299. doi: https://doi.org/10.1136/jmg.2008.064337
8. Ismail D, Hussain K. Role of 18f-Dopa PET/CT imaging in congenital hyperinsulinism. Rev Endocr Metab Disord. 2010;11(3): 165-169. doi: https://doi.org/10.1007/s11154-010-9145-1
9. Barthlen W, Blankenstein O, Mau H, et al. Evaluation of [18f]Fluoro-L-Dopa positron emission tomography-computed tomography for surgery in focal congenital hyperinsulinism. J Clin Endocrinol Metab. 2008;93(3):869-875. doi: https://doi.org/10.1210/jc.2007-2036
10. Treglia G, Sadeghi R, Annunziata S, et al. Diagnostic performance of Fluorine-18-fluorodeoxyglucose positron emission tomography in the postchemotherapy management of patients with seminoma: systematic review and metaanalysis. Biomed Res Int. 2014;2014:852681. doi: https://doi.org/10.1155/2014/852681
11. Otonkoski T, Nanto-Salonen K, Seppanen M, et al. Noninvasive diagnosis of focal hyperinsulinism of infancy with [18f]-Dopa positron emission tomography. Diabetes. 2005;55(1):13-18. doi: https://doi.org/10.2337/diabetes.55.01.06.db05-1128
12. Meintjes M, Endozo R, Dickson J, et al. 18f-Dopa PET and enhanced CT imaging for congenital hyperinsulinism: initial UK experience from A technologist’s perspective. Nucl Med Commun. 2013;34(6):601-608. doi: https://doi.org/10.1097/Mnm.0b013e32836069d0
13. Shield JP. Fluorine-18 L-3,4-dihydroxyphenylalanine positron emission tomography: improving surgery and outcome in focal hyperinsulinism. Commentary to Mohnike et al.: Proposal for a standardized protocol for F-Dopa-PET (PET/CT) in congenital hyperinsulinism (Horm Res 2006;66:40-42). Horm Res. 2006;66(1):43-44. doi: https://doi.org/10.1159/000093472
14. Kapoor RR, Flanagan SE, Arya VB, et al. Clinical and molecular characterisation of 300 patients with congenital hyperinsulinism. Eur J Endocrinol. 2013;168(4):557-564. doi: https://doi.org/10.1530/eje-12-0673
15. Banerjee I, Skae M, Flanagan SE, et al. The contribution of rapid KATP channel gene mutation analysis to the clinical management of children with congenital hyperinsulinism. Eur J Endocrinol. 2011;164(5):733-740. doi: https://doi.org/10.1530/eje-10-1136
16. Snider KE, Becker S, Boyajian L, et al. Genotype and phenotype correlations in 417 children with congenital hyperinsulinism. J Clin Endocrinol Metab. 2013;98(2):E355-E363. doi: https://doi.org/10.1210/jc.2012-2169
17. Blomberg BA, Moghbel MC, Saboury B, et al. The value of radiologic interventions and (18)F-Dopa PET in diagnosing and localizing focal congenital hyperinsulinism: systematic review and metaanalysis. Mol Imaging Biol. 2013;15(1):97-105. doi: https://doi.org/10.1007/s11307-012-0572-0
18. Yang J, Hao R, Zhu X. Diagnostic role of 18F-dihydroxyphenylalanine positron emission tomography in patients with congenital hyperinsulinism: a metaanalysis. Nucl Med Commun. 2013;34(4):347-353. doi: https://doi.org/10.1097/Mnm.0b013e32835e6ac6
19. Christiansen CD, Petersen H, Nielsen AL, et al. 18f-Dopa PET/CT and 68Ga-Dotanoc PET/CT scans as diagnostic tools in focal congenital hyperinsulinism: a blinded evaluation. Eur J Nucl Med Mol Imaging. 2018;45(2):250-261. doi: https://doi.org/10.1007/s00259-017-3867-1
Supplementary files
|
1. Fig. 1, a. Results of positron emission tomography with [18F] -Fluoro-DOPA: focal form of WGI. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(960KB)
|
Indexing metadata ▾ |
|
2. Fig. 1, b. Results of positron emission tomography with [18F] -fluorodof: diffuse form of WGI. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(941KB)
|
Indexing metadata ▾ |
Review
For citations:
Gubaeva D.N., Melikyan M.A., Ryzhkova D.V., Mitrofanova L.B., Nikitina I.L. Differential diagnosis of morphological forms of congenital hyperinsulinism using [18F]-DOPA PET/CT. Problems of Endocrinology. 2018;64(5):306-311. https://doi.org/10.14341/probl9726

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).