Expression of plasma microRNA in patients with acromegaly
https://doi.org/10.14341/probl10263
Abstract
BACKGROUND: microRNA is a class of small non-coding RNA molecules involved in posttranscriptional regulation of gene expression. MicroRNAs are detectable in blood in stable concentrations, which makes them promising biomarkers for various diseases.
AIM: to assess plasma microRNA expression in patients with active acromegaly compared with healthy controls.
MATERIAL AND METHODS: single-center, case-control study: assessment of plasma microRNA in patients with acromegaly compared with healthy controls. Fasting blood samples were drawn and centrifuged at +5°С temperature and 3000 rpm for 20 minutes, then aliquoted and frozen at –80°C until further analysis. MicroRNA extraction and library preparation was done according to manufacturer’s instructions. Expression analysis was performed on NextSeq sequencer. Bioinformatic analysis using atropos (adapted deletion), STAR (aligning), FastQC (quality control), seqbuster/seqcluster/miRge2 (microRNA annotation, isomiR and new microRNA search, expression analysis). Primary endpoint of the study – differential expression of plasma microRNA in patients with acromegaly compared with healthy controls.
RESULTS: we included 12 patients with acromegaly – age 33.1 [20; 47], BMI 29.3 kg/m2 [24.0; 39.6], IGF-1 686.1 ng/mL [405.9; 1186.0] and 12 healthy subjects – age 36.2 [26; 44], BMI 26.7 kg/m2 [19.5; 42.5], IGF-1 210.4 ng/mL [89.76; 281.90]; gender ratio for both groups – 4 males, 8 females. The groups did not differ in gender (p=0.666), age (p=0.551) and BMI (p=0.378). We found decreased expression of four microRNAs in patients with acromegaly: miR-4446-3p –1.317 (p=0.001), miR-215-5p –3.040 (p=0.005), miR-342-5p –1.875 (p=0.013) and miR-191-5p –0.549 (p=0.039). However, none of these changes were statistically significant after adjustment for multiple comparisons (q >0.1).
CONCLUSION: we found four microRNAs, which could potentially be downregulated in plasma of patients with acromegaly. The result need to be validated using different measurement method with larger sample size.
About the Authors
Alexander S. LutsenkoRussian Federation
research scientist of neuroendocrinology and bone diseases department
Zhanna E. Belaya
Russian Federation
MD, PhD, Professor
Elena G. Przhiyalkovskaya
Russian Federation
PhD
Alexey G. Nikitin
Russian Federation
PhD
Philipp A. Koshkin
Russian Federation
PhD
Anastasiya M. Lapshina
Russian Federation
MD, PhD
Patimat M. Khandaeva
Endocrinology Research Centre
Russian Federation
Research Scientist of Neuroendocrinological department
Galina A. Melnichenko
Russian Federation
MD, PhD, Professor
References
1. Lavrentaki A, Paluzzi A, Wass JA, Karavitaki N. Epidemiology of acromegaly: review of population studies. Pituitary. 2017;20(1):4-9. doi: https://doi.org/10.1007/s11102-016-0754-x
2. Pivonello R, Auriemma RS, Grasso LF, et al. Complications of acromegaly: cardiovascular, respiratory and metabolic comorbidities. Pituitary. 2017;20(1):46-62. doi: https://doi.org/10.1007/s11102-017-0797-7
3. Melmed S, Bronstein MD, Chanson P, et al. A consensus statement on acromegaly therapeutic outcomes. Nat Rev Endocrinol. 2018;14(9):552-561 doi: https://doi.org/10.1038/s41574-018-0058-5.
4. Sherlock M, Woods C, Sheppard MC. Medical therapy in acromegaly. Nat Rev Endocrinol. 2011;7(5):291300. doi: 10.1038/nrendo.2011.42
5. Sohel MH. Extracellular/circulating microRNAs: release mechanisms, functions and challenges. Achiev Life Sci. 2016;10(2): 175-186. doi: https://doi.org/10.1016/j.als.2016.11.007
6. Bottoni A, Piccin D, Tagliati F, et al. miR-15a and miR-16-1 down-regulation in pituitary adenomas. J Cell Physiol. 2005; 204(1):280-285. doi: https://doi.org/10.1002/jcp.20282
7. Lutsenko AS, Belaya ZE, Przhiyalkovskaya EG, Mel’nichenko GA. MicroRNA: role in GH-secreting pituitary adenoma pathogenesis. Annals of the Russian Academy of Medical Sciences. 2017;72(4):290-298. doi: 10.15690/vramn856
8. Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: approaches and considerations. Nat Rev Genet. 2012;13(5):358-369. doi: https://doi.org/10.1038/nrg3198
9. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: https://doi.org/10.1186/s13059-014-0550-8.
10. Grebennikova TA, Belaya ZhE, Nikitin AG, et al. Expression of microRNA related to bone remodeling regulation in plasma in patients with acromegaly. Obesity and metabolism. 2017;14(3):32-37. doi: 10.14341/omet2017332-37
11. Valassi E, García-Giralt N, Malouf J, et al. Circulating miR-103a-3p and miR-660-5p are associated with bone parameters in patients with controlled acromegaly. Endocr Connect. 2019;8(1):39-49. doi: https://doi.org/10.1530/EC-18-0482
12. Feng Y, Mao Z, Wang X, et al. MicroRNAs and target genes in pituitary adenomas. Horm Metab Res. 2018;50(3):179-192. doi: https://doi.org/10.1055/s-0043-123763
13. Farina NH, Ramsey JE, Cuke ME, et al. Development of a predictive miRNA signature for breast cancer risk among high-risk women. Oncotarget. 2017;8(68):112170-112183. doi: https://doi.org/10.18632/oncotarget.22750
14. Kim BG, Kang S, Han HH, et al. Transcriptome-wide analysis of compression-induced microRNA expression alteration in breast cancer for mining therapeutic targets. Oncotarget. 2016;7(19): 27468-27478. doi: https://doi.org/10.18632/oncotarget.8322
15. Wang J, Tan L, Tan L, et al. Circulating microRNAs are promising novel biomarkers for drug-resistant epilepsy. Sci Rep. 2015;5:10201. doi: https://doi.org/10.1038/srep10201
16. Monterde-Cruz L, Ramírez-Salazar EG, Rico-Martínez G, et al. Circulating miR-215-5p and miR-642a-5p as potential biomarker for diagnosis of osteosarcoma in Mexican population. Hum Cell. 2018;31(4):292-299. doi: https://doi.org/10.1007/s13577-018-0214-1
17. Vychytilova-Faltejskova P, Merhautova J, Machackova T, et al. MiR-215-5p is a tumor suppressor in colorectal cancer targeting EGFR ligand epiregulin and its transcriptional inducer HOXB9. Oncogenesis. 2017;6(11):399. doi: https://doi.org/10.1038/s41389-017-0006-6
18. Ahmadi R, Heidarian E, Fadaei R, et al. miR-342-5p expression levels in coronary artery disease patients and its association with inflammatory cytokines. Clin Lab. 2018;64(4):603-609. doi: https://doi.org/10.7754/Clin.Lab.2017.171208.
19. Yan X, Cao J, Liang L, et al. miR-342-5p is a notch downstream molecule and regulates multiple angiogenic pathways including notch, vascular endothelial growth factor and transforming growth factor β signaling. J Am Heart Assoc. 2016;5(2). pii: e003042. doi: 10.1161/JAHA.115.003042
20. Yang H, Li Q, Niu J, et al. MicroRNA-342-5p and miR-608 inhibit colon cancer tumorigenesis by targeting NAA10. Oncotarget. 2016;7(3):2709-2720. doi: https://doi.org/10.18632/oncotarget.6458
21. Rosignolo F, Sponziello M, Giacomelli L, et al. Identification of thyroid-associated serum microrna profiles and their potential use in thyroid cancer follow-up. J Endocr Soc. 2017;1(1):3-13. doi: https://doi.org/10.1210/js.2016-1032
22. Kumar P, Dezso Z, MacKenzie C, et al. Circulating miRNA biomarkers for Alzheimer’s disease. PLoS One. 2013;8(7):e69807. doi: 10.1371/journal.pone.0069807
23. Sharma S, Nagpal N, Ghosh PC, Kulshreshtha R. P53-miR-191-SOX4 regulatory loop affects apoptosis in breast cancer. RNA. 2017;23(8):1237-1246. doi: https://doi.org/10.1261/rna.060657.117
24. Vistbakka J, Sumelahti ML, Lehtimäki T, et al. Evaluation of serum miR-191-5p, miR-24-3p, miR-128-3p, and miR-376c-3 in multiple sclerosis patients. Acta Neurol Scand. 2018;138(2):130-136. doi: https://doi.org/10.1111/ane.12921
25. Sánchez-Mora C, Soler Artigas M, Garcia-Martínez I, et al. Epigenetic signature for attention-deficit/hyperactivity disorder: identification of miR-26b-5p, miR-185-5p, and miR-191-5p as potential biomarkers in peripheral blood mononuclear cells. Neuropsychopharmacology. 2019;44(5):890-897. doi: https://doi.org/10.1038/s41386-018-0297-0
26. Nam JW, Rissland OS, Koppstein D, et al. Global analyses of the effect of different cellular contexts on microRNA targeting. Mol Cell. 2014;53(6):1031-1043. doi: https://doi.org/10.1016/j.molcel.2014.02.013
27. Betel D, Koppal A, Agius P, et al. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 2010;11(8):R90. doi: https://doi.org/10.1186/gb-2010-11-8-r90.
28. Reczko M, Maragkakis M, Alexiou P, et al. Functional microRNA targets in protein coding sequences. Bioinformatics. 2012;28(6): 771-776. doi: https://doi.org/10.1093/bioinformatics/bts043
29. Krek A, Grün D, Poy MN, et al. Combinatorial microRNA target predictions. Nat Genet. 2005;37(5):495-500. doi: https://doi.org/10.1038/ng1536
30. Alatzoglou KS, Kelberman D, Dattani MT. The role of SOX proteins in normal pituitary development. J Endocrinol. 2009;200(3): 245-258. doi: https://doi.org/10.1677/JOE-08-0447
31. Ma Y, Qi X, Du J, et al. Identification of candidate genes for human pituitary development by EST analysis. BMC Genomics. 2009; 10(1):109. doi: https://doi.org/10.1186/1471-2164-10-109
32. Novikova MV, Rybko VA, Khromova NV, et al. The role of Notch pathway in carcinogenesis. Advances in molecular oncology. 2015;2(3):30-42. doi: 10.17650/2313-805X-2015-2-3-30-42
33. Perrone S, Zubeldia-Brenner L, Gazza E, et al. Notch system is differentially expressed and activated in pituitary adenomas of distinct histotype, tumor cell lines and normal pituitaries. Oncotarget. 2017;8(34):57072−57088. doi: https://doi.org/10.18632/oncotarget.19046
34. Liu Q, Tong D, Liu G, et al. Carney complex with PRKAR1A gene mutation. Medicine (Baltimore). 2017;96(50):e8999. doi: https://doi.org/10.1097/MD.0000000000008999
35. Ezzat S, Caspar-Bell GM, Chik CL, et al. Predictive markers for postsurgical medical management of acromegaly: a systematic review and consensus treatment guideline. Endocr Pract. 2019;25(4):379-393. doi: https://doi.org/10.4158/EP-2018-0500
36. Agarwal V, Bell GW, Nam J-W, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4. doi: https://doi.org/10.7554/eLife.05005
37. Kameswaran V, Bramswig NC, McKenna LB, et al. Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets. Cell Metab. 2014;19(1):135-145. doi: https://doi.org/10.1016/j.cmet.2013.11.016
38. Gottwein E, Corcoran DL, Mukherjee N, et al. Viral microRNA targetome of KSHV-infected primary effusion lymphoma cell lines. Cell Host Microbe. 2011;10(5):515-526. doi: https://doi.org/10.1016/j.chom.2011.09.012
39. Yang Q, Lu J, Wang S, et al. Application of next-generation sequencing technology to profile the circulating microRNAs in the serum of preeclampsia versus normal pregnant women. Clin Chim Acta. 2011;412(23−24):2167-2173. doi: https://doi.org/10.1016/j.cca.2011.07.029
40. Suzuki M, Konno S, Makita H, et al. Altered circulating exosomal RNA profiles detected by next-generation sequencing in patients with severe asthma. Eur Res J. 2016;48:PA3410. doi: https://doi.org/10.1183/13993003.congress-2016.PA3410
41. Van Laar R, Leigh K, Zielinski A, et al. Small RNA next generation sequencing (NGS) of CD138+ plasma cells from multiple myeloma patients and comparison to the 70-gene mRNA-based prognostic risk score. Blood. 2016;128(22):2089. doi: https://doi.org/10.1182/blood.v128.22.2089.2089
42. Riffo-Campos A, Riquelme I, Brebi-Mieville P. Tools for sequence-based miRNA target prediction: what to choose? Int J Mol Sci. 2016;17(12). doi: 10.3390/ijms17121987
Supplementary files
Review
For citations:
Lutsenko A.S., Belaya Zh.E., Przhiyalkovskaya E.G., Nikitin A.G., Koshkin P.A., Lapshina A.M., Khandaeva P.M., Melnichenko G.A. Expression of plasma microRNA in patients with acromegaly. Problems of Endocrinology. 2019;65(5):311-318. https://doi.org/10.14341/probl10263

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).