Hereditary cancer syndromes: a modern paradigm
https://doi.org/10.14341/probl12366
Abstract
About 5–10% of malignant neoplasms (MN) are hereditary. Carriers of mutations associated with hereditary tumor syndromes (HTS) are at high risk of developing tumors in childhood and young age and synchronous and metachronous multiple tumors. At the same time, this group of diseases remains mainly an oncological problem, and clinical decisions are made only when MNs are detected in carriers of pathogenic mutations.
Individual recommendations for cancer screening, treatment, and prevention should be developed for carriers of mutations associated with HTS to prevent an adverse outcome of the disease. It is essential to identify patients at risk by doctors of all specialties for further referral to medical and genetic counseling with molecular genetic testing (in case of indications). The problems of standardization of enrollment criteria for genetic tests, further tactics of prevention, screening, and treatment of many hereditary oncological diseases remain unsolved.
This review was created to inform doctors of various specialties, including endocrinologists, about the HTS. This allows them to get acquainted with main clinical features of specific syndromes, helps to understand the difference between hereditary and non-hereditary cancer, recognize signs of hereditary cancer, and introduce the indications for genetic examination and genetic counseling of the patient. Also, significant differences between international and domestic recommendations on screening measures, diagnosis, and treatment of HTS underline the need to review the existing and develop new algorithms for medical support of patients with HTS.
About the Authors
Elena E. BaranovaRussian Federation
MD, PhD; ORCID: 0000-0001-9638-2303; eLibrary SPIN: 3163-6666
Barrikadnaya ul., 2/1, str. 1, Moscow, 123242
Natalia A. Bodunova
Russian Federation
MD, PhD; ORCID: 0000-0002-3119-7673; eLibrary SPIN: 3341-2523
Moscow
Мaria V. Vorontsova
Russian Federation
MD, PhD; ORCID: 0000-0002-9124-294X; eLibrary SPIN: 4168-6851
Moscow
Galina S. Zakharova
Russian Federation
PhD; ORCID: 0000-0002-2548-8511; eLibrary SPIN: 3774-6551
Moscow
Maria V. Makarova
Russian Federation
MD; ORCID: 0000-0003-1581-9118; eLibrary SPIN: 1638-2012
Moscow
Pavel O. Rumyantsev
Russian Federation
MD, PhD; ORCID: 0000-0002-7721-634X; eLibrary SPIN: 7085-7976
Moscow
Igor E. Hat'kov
Russian Federation
MD, PhD, Professor; ORCID: 0000-0002-4088-8118; eLibrary SPIN: 5128-5820
Moscow
References
1. Garber J, Offit K. Hereditary cancer predisposition syndromes. J Clin Oncol. 2005;23(2):276−292. doi: 10.1200/jco.2005.10.042.
2. Harper P. Practical genetic counselling. 6th ed. London: Hodder Arnold; 2004. 409 р.
3. Knudson A. Two genetic hits (more or less) to cancer. Nat Rev Cancer. 2001;1(2):157−162. doi: 10.1038/35101031.
4. Imianitov EN. Obshchie predstavleniia o nasledstvennykh opukholevykh sindromakh. Prakticheskaia onkologiia. 2014;15(3):101−106. (In Russ.).
5. Hampel H, Bennett R, Buchanan A, et al. A practice guideline from the American College of Medical Genetics and Genomics and the National Society of Genetic Counselors: referral indications for cancer predisposition assessment. Genet Med. 2014;17(1):70−87. doi: 10.1038/gim.2014.147.
6. Tiwari R, Singh A, Somwaru A, et al. Radiologist’s Primer on imaging of common hereditary cancer syndromes. Radiographics. 2019;39(3):759−778. doi: 10.1148/rg.2019180171.
7. Shinagare A, Giardino A, Jagannathan J, et al. Hereditary cancer syndromes: a radiologist’s perspective. Am J Roentgenol. 2011;197(6):W1001−W1007. doi: 10.2214/ajr.11.6465.
8. Ballinger M, Ferris N, Moodie K, et al. Surveillance in Germline TP53 mutation carriers utilizing whole-body magnetic resonance imaging. JAMA Oncol. 2017;3(12):1735−1736. doi: 10.1001/jamaoncol.2017.
9. Anupindi S, Bedoya M, Lindell R, et al. Diagnostic performance of whole-body MRI as a tool for cancer screening in children with genetic cancer-predisposing conditions. Am J Roentgenol. 2015;205(2):400−408. doi: 10.2214/ajr.14.13663.
10. ClinicalTrials.gov [Internet]. Screening with whole body MRI for detection of primary tumors in children and adults with Li-Fraumeni syndrome (LFS) and other cancer predisposition syndromes. Available from: https://www.clinicaltrials.gov/ct2/show/NCT02950987.
11. Kwee T, Takahara T, Ochiai R, et al. Complementary roles of whole- body diffusion-weighted MRI and 18F-FDG PET: the state of the art and potential applications. J Nucl Med. 2010;51(10):1549−1558. doi: 10.2967/jnumed.109.073908.
12. Linet M, Slovis T, Miller D, et al. Cancer risks associated with external radiation from diagnostic imaging procedures. CA Cancer J Clin. 2012;62(2):75−100. doi: 10.3322/caac.21132.
13. Aretz S, Vasen H, Olschwang S. Clinical Utility Gene Card for: Familial adenomatous polyposis (FAP) and attenuated FAP (AFAP) − update 2014. Eur J Hum Genet. 2014;23(6):889−889. doi: 10.1038/ejhg.2014.193.
14. Boland P, Yurgelun M, Boland C. Recent progress in Lynch syndrome and other familial colorectal cancer syndromes. CA Cancer J Clin. 2018;68(3):217−231. doi: 10.3322/caac.21448.
15. Brierley K, Blouch E, Cogswell W, et al. Adverse events in cancer genetic testing. Cancer J. 2012;18(4):303−309. doi: 10.1097/ppo.0b013e3182609490.
16. Farmer M, Bonadies D, Mahon S, et al. Adverse events in genetic testing: the fourth case series. Cancer J. 2019;25(4):231−236. doi: 10.1097/ppo.0000000000000391.
17. Daly M, Pilarski R, Yurgelun M, et al. NCCN guidelines insights: genetic/familial high-risk assessment: breast, ovarian, and pancreatic, version 1.2020. J Natl Compr Canc Netw. 2020;18(4):380−391. doi: 10.6004/jnccn.2020.0017.
18. Taeubner J, Wieczorek D, Yasin L, et al. Penetrance and expressivity in inherited cancer Predisposing Syndromes. Trends Cancer. 2018;4(11):718−728. doi: 10.1016/j.trecan.2018.09.002.
19. Powers J, Ebrahimzadeh J, Katona B. Genetic testing for hereditary gastrointestinal cancer syndromes: Interpreting results in today’s practice. Curr Treat Options Gastroenterol. 2019;17(4):636−649. doi: 10.1007/s11938-019-00253-2.
20. Vasen H, Blanco I, Aktan-Collan K, et al. Revised guidelines for the clinical management of Lynch syndrome (HNPCC): recommendations by a group of European experts. Gut. 2013;62(6):812−823. doi: 10.1136/gutjnl-2012-304356.
21. Rahman N. Mainstreaming genetic testing of cancer predisposition genes. Clin Med (Lond). 2014;14(4):436−439. doi: 10.7861/clinmedicine.14-4-436.
22. Susswein L, Marshall M, Nusbaum R, et al. Pathogenic and likely pathogenic variant prevalence among the first 10,000 patients referred for next-generation cancer panel testing. Genet Med. 2015;18(8):823−832. doi: 10.1038/gim.2015.166.
23. Ten Broeke S, Brohet R, Tops C, et al. Lynch Syndrome caused by germline PMS2 mutations: delineating the cancer risk. J Clin Oncol. 2015;33(4):319−325. doi: 10.1200/jco.2014.57.8088.
24. Colas C, Golmard L, de Pauw A, et al. «Decoding hereditary breast cancer» benefits and questions from multigene panel testing. Breast. 2019;45:29−35. doi: 10.1016/j.breast.2019.01.002.
25. Shahi R, de Brakeleer S, Caljon B, et al. Identification of candidate cancer predisposing variants by performing whole-exome sequencing on index patients from BRCA1 and BRCA2- negative breast cancer families. BMC Cancer. 2019;19(1):313. doi: 10.1186/s12885-019-5494-7.
26. Sponziello M, Benvenuti S, Gentile A, et al. Whole exome sequencing identifies a germline MET mutation in two siblings with hereditary wild-type RET medullary thyroid cancer. Hum Mutat. 2017;39(3):371−377. doi: 10.1002/humu.23378.
27. Manahan E, Kuerer H, Sebastian M, et al. Consensus guidelines on genetic` testing for hereditary breast cancer from the American society of breast surgeons. Ann Surg Oncol. 2019;26(10):3025−3031. doi: 10.1245/s10434-019-07549-8.
28. Lumish H, Steinfeld H, Koval C, et al. Impact of panel gene testing for hereditary breast and ovarian cancer on patients. J Genet Couns. 2017;26(5):1116−1129. doi: 10.1007/s10897-017-0090-y.
29. Lairmore T, Diesen D, Goldfarb M, et al. American Association of Clinical Endocrinologists and American College of Endocrinology Disease State Clinical Review: timing of multiple endocrine neoplasia thyroidectomy and extent of central neck lymphadenectomy. Endocr Pract. 2015;21(7):839−847. doi: 10.4158/ep14463.dscr.
30. Song C, Teo S, Taib N, Yip C. Surgery for BRCA, TP53 and PALB2: a literature review. Ecancermedicalscience. 2018;12:863. doi: 10.3332/ecancer.2018.863.
31. Roskoski R, Sadeghi-Nejad A. Role of RET protein-tyrosine kinase inhibitors in the treatment RET-driven thyroid and lung cancers. Pharmacol Res. 2018;128:1−17. doi: 10.1016/j.phrs.2017.12.021.
32. Lima Z, Ghadamzadeh M, Arashloo F, et al. Recent advances of therapeutic targets based on the molecular signature in breast cancer: genetic mutations and implications for current treatment paradigms. J Hematol Oncol. 2019;12(1):1−25. doi: 10.1186/s13045-019-0725-6.
33. Matsui Y, Tsuchida Y, Keng P. Effects of p53 mutations on cellular sensitivity to ionizing radiation. Am J Clin Oncol. 2001;24(5):486−490. doi: 10.1097/00000421-200110000-00014.
34. Gronwald J, Byrski T, Lubinski J, Narod S. Cisplatin in breast cancer treatment in BRCA1 carriers. Hered Cancer Clin Pract. 2012;10 (Suppl. 4):17. doi: 10.1186/1897-4287-10-s4-a17.
35. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394−424. doi: 10.3322/caac.21492.
36. Zlokachestvennye novoobrazovanija v Rossii v 2017 godu (zabolevaemost’ i smertnost’). Ed. by A.D. Kaprin, V.V. Starinskii, G.V. Petrova. Moscow: MNIOI im. P.A. Gercena – filial FGBU «NMIC radiologii» Minzdrava Rossii; 2018. 250 р. (In Russ).
37. Wells K, Wise P. Hereditary colorectal cancer syndromes. Surg Clin North Am. 2017;97(3):605−625. doi: 10.1016/j.suc.2017.01.009.
38. Kastrinos F, Syngal S. Inherited colorectal cancer syndromes. Cancer J. 2011;17(6):405−415. doi: 10.1097/ppo.0b013e318237e408.
39. Ma H, Brosens L, Offerhaus G, et al. Pathology and genetics of hereditary colorectal cancer. Pathology. 2018;50(1):49−59. doi: 10.1016/j.pathol.2017.09.004.
40. Lynch H, de la Chapelle A. Hereditary colorectal cancer. N Engl J Med. 2003;348(10):919−932. doi: 10.1056/nejmra012242.
41. Vasen H, Watson P, Meclin J, Lynch H. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative Group on HNPCC. Gastroenterology. 1999;116(6):1453−1456. doi: 10.1016/s0016-5085(99)70510-x.
42. Umar A, Boland C, Terdiman J, et al. Revised bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch Syndrome) and microsatellite instability. JNCI. 2004;96(4):261−268. doi: 10.1093/jnci/djh034.
43. Rodriguez-Bigas M, Boland C, Hamilton S, et al. A national cancer institute workshop on hereditary nonpolyposis colorectal cancer syndrome: meeting highlights and bethesda guidelines. JNCI. 1997;89(23):1758−1762. doi: 10.1093/jnci/89.23.1758.
44. Winawer S, Zauber A, Ho M, et al. Prevention of colorectal cancer by colonoscopic polypectomy. N Engl J Med. 1993;329(27):1977−1981. doi: 10.1056/nejm199312303292701.
45. Aretz S, Uhlhaas S, Goergens H, et al. MUTYH-associated polyposis: 70 of 71 patients with biallelic mutations present with an attenuated or atypical phenotype. Int J Cancer. 2006;119(4):807−814. doi: 10.1002/ijc.21905.
46. NMITS onkologii im. N.N. Petrova [Internet]. Geneticheskoye konsul’tirovaniye pri kolorektal’nom rake. (In Russ). Доступно по: https://www.niioncologii.ru/news/geneticheskoe_konsultirovanie_pri_kolorektalnom_rake. Ссылка активна на 15.05.2020.
47. Anis AH. Mutations and cancer genesis highlights on BRCA1 and BRCA2 Genes. J Cancer Prev Curr Res. 2015;2(6):00063. doi: 10.15406/jcpcr.2015.02.00063.
48. Apostolou P, Fostira F. Hereditary Breast cancer: the era of new susceptibility genes. Biomed Res Int. 2013;2013:1−11. doi: 10.1155/2013/747318.
49. Antoniou A, Pharoah P, McMullan G, et al. Evidence for further breast cancer susceptibility genes in addition to BRCA1 and BRCA2 in a population-based study. Genet Epidemiol. 2001;21(1):1−18. doi: 10.1002/gepi.1014.
50. Walsh T, Casadei S, Coats K, et al. Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer. JAMA. 2006;295(12):1379−1388. doi: 10.1001/jama.295.12.1379.
51. Marini F, Falchetti A, del Monte F, et al. Multiple endocrine neoplasia type 2. Orphanet J Rare Dis. 2006;1:45. doi: 10.1186/1750-1172-1-45.
52. Ametov AS, Depui TI, Pozdnyakova NV, et al. Genetic markers in the diagnosis of thyroid cancer. Endocrinology: news, opinions, training. 2018;7(1):42−49. (In Russ.).
53. Polyakov VG, Shishkov RV, Ilyin AA, et al. Prophylactic thyroidectomy results among RET germline mutation bearers in families with hereditary forms of medullary thyroid cancer. Clinical and experimental thyroidology. 2016;12(1):22−33. (In Russ.). doi: 10.14341/ket2016122-33.
54. Romanchishen AF, Reshetov IV, Matveeva ZS, Vabalaite KV. Family forms of thyroid cancer. Head and neck. 2015;(3):43−46. (In Russ.).
55. Le Bihan C, Moutou C, Brugières L, et al. ARCAD: A method for estimating age-dependent disease risk associated with mutation carrier status from family data. Genet Epidemiol. 1995;12(1):13−25. doi: 10.1002/gepi.1370120103.
56. McCuaig J, Armel S, Novokmet A, et al. Routine TP53 testing for breast cancer under age 30: ready for prime time? Fam Cancer. 2012;11(4):607−613. doi: 10.1007/s10689-012-9557-z.
57. Thull D, Vogel V. Recognition and management of hereditary breast cancer syndromes. Oncologist. 2004;9(1):13−24. doi: 10.1634/theoncologist.9-1-13.
58. Adam MР, Ardinger HН, Pagon RА, Wallace SE. Gene Reviews [Internet]. Seattle (WA): University of Washington, Seattle; 1993−2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1116/.
Supplementary files
Review
For citations:
Baranova E.E., Bodunova N.A., Vorontsova М.V., Zakharova G.S., Makarova M.V., Rumyantsev P.O., Hat'kov I.E. Hereditary cancer syndromes: a modern paradigm. Problems of Endocrinology. 2020;66(4):24-34. (In Russ.) https://doi.org/10.14341/probl12366

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).