Preview

Problems of Endocrinology

Advanced search

Comparative morphofunctional analysis of the state of fetoplacental complex in diabetes mellitus (literature review)

https://doi.org/10.14341/probl12399

Abstract

This article reviews the literature on placental morphofunctional changes in placenta of patients with type 1 and type 2 diabetes mellitus and gestational diabetes mellitus. The detailed analysis of features of pathogenesis of various abnormalities of the fetoplacental complex depending on the type of diabetes, its influence on the formation of the placental vascular bed. The analysis of mechanisms of development of placenta formation disorders, pathologies of placental vascular bed, the role of hyperglycemia and hyperinsulinemia in villous maturation, placental weight gain, perinatal outcomes. The discussed anomalies have a significant impact on the fetoplacental complex, acting as epigenetic factors, forming the environment for the fetus, which may later affect the health of the unborn child. They lead to adverse perinatal outcomes, including high infant morbidity and mortality.


Literature search was performed in Russian (eLibrary, CyberLeninka.ru) and international (PubMed, Cochrane Library) databases in Russian and English languages. The free access to the full text of the articles was in priority. The selection of sources was prioritized for the period from 2016 to 2020. However, due to the lack of knowledge of the chosen topic, the selection of sources was dated from 2001.

About the Authors

Olga R. Grigoryan
https://www.endocrincentr.ru/doctors/grigoryan-olga-rafaelevna
Endocrinology Research Centre
Russian Federation

MD, PhD



Yulia S. Absatarova
Endocrinology Research Centre
Russian Federation

MD, PhD



Robert K. Mikheev
Endocrinology Research Centre; Moscow State University of Medicine and Dentistry named after A.I. Evdokimov
Russian Federation

medical student



Elena N. Andreeva
Endocrinology Research Centre; Moscow State University of Medicine and Dentistry named after A.I. Evdokimov
Russian Federation

MD, PhD, Professor



References

1. Burton GJ, Fowden AL. The placenta: a multifaceted, transient organ. Philos Trans R Soc Lond B Biol Sci. 2015;370(1663):20140066. doi: 10.1098/rstb.2014.0066.

2. Kaufmann P, Mayhew TM, Charnock-Jones DS. Aspects of human fetoplacental vasculogenesis and angiogenesis. II. Changes during normal pregnancy. Placenta. 2004;25(2-3):114–126. doi: 10.1016/j.placenta.2003.10.009.

3. Bhattacharjee D, Mondal SK, Garain P, et al. Histopathological study with immunohistochemical expression of vascular endothelial growth factor in placentas of hyperglycemic and diabetic women. J Lab Physicians. 2017;9(4):227-233. doi: 10.4103/JLP.JLP_148_16.

4. Cvitic S, Desoye G, Hiden U. Glucose, insulin, and oxygen interplay in placental hypervascularisation in diabetes mellitus. Biomed Res Int. 2014;2014:145846. doi: 10.1155/2014/145846.

5. Zhou Y, Bellingard V, Feng KT, et al. Human cytotrophoblasts promote endothelial survival and vascular remodeling through secretion of Ang2, PlGF, and VEGF-C. Dev Biol. 2003;263(1):114-125. doi: 10.1016/s0012-1606(03)00449-4.

6. Poole TJ, Finkelstein EB, Cox CM. The role of FGF and VEGF in angioblast induction and migration during vascular development. Dev Dyn. 2001;220(1):1-17. doi: 10.1002/1097-0177(2000)9999:9999<::AID-DVDY1087>3.0.CO;2-2.

7. Pietro L, Daher S, Rudge MV, et al. Vascular endothelial growth factor (VEGF) and VEGF-receptor expression in placenta of hyperglycemic pregnant women. Placenta. 2010;31(9):770-780. doi: 10.1016/j.placenta.2010.07.003.

8. Sobrevia L, Salsoso R, Fuenzalida B, et al. Insulin is a key modulator of fetoplacental endothelium metabolic disturbances in gestational diabetes mellitus. Front Physiol. 2016;7:119. doi: 10.3389/fphys.2016.00119.

9. Chang SC, Vivian Yang WC. Hyperglycemia induces altered expressions of angiogenesis associated molecules in the trophoblast. Evid Based Complement Alternat Med. 2013;2013:457971. doi: 10.1155/2013/457971.

10. Crume TL, Ogden L, West NA, et al. Association of exposure to diabetes in utero with adiposity and fat distribution in a multiethnic population of youth: the Exploring Perinatal Outcomes among Children (EPOCH) Study. Diabetologia. 2011;54(1):87−92. doi: 10.1007/s00125-010-1925-3.

11. Dabelea D, Mayer-Davis EJ, Lamichhane AP, et al. Association of intrauterine exposure to maternal diabetes and obesity with type 2 diabetes in youth: the SEARCH Case-Control Study. Diabetes Care. 2008;31(7):1422−1426. doi: 10.2337/dc07-2417.

12. Dabelea D, Harrod CS. Role of developmental overnutrition in pediatric obesity and type 2 diabetes. Nutr Rev. 2013;71 Suppl 1:S62−S67. doi: 10.1111/nure.12061.

13. Desoye G, Cervar-Zivkovic M. Diabetes mellitus, obesity, and the placenta. Obstet Gynecol Clin North Am. 2020;47(1):65−79. doi: 10.1016/j.ogc.2019.11.001.

14. Ringholm L Damm P, Mathiesen ER. Improving pregnancy outcomes in women with diabetes mellitus: modern management. Nat Rev Endocrinol. 2019;15(7):406−416. doi: 10.1038/s41574-019-0197-3.

15. Catalano PM, McIntyre HD, Cruickshank JK, et al. The hyperglycemia and adverse pregnancy outcome study: associations of GDM and obesity with pregnancy outcomes. Diabetes Care. 2012;35(4):780−786. doi: 10.2337/dc11-1790.

16. Mackin ST, Nelson SM, Kerssens JJ, et al. Diabetes and pregnancy: national trends over a 15-year period. Diabetologia. 2018;61(5):1081−1088. doi: 10.1007/s00125-017-4529-3.

17. Higgins M, McAuliffe FM, Mooney EE. Clinical associations with a placental diagnosis of delayed villous maturation: a retrospective study. Pediatr Dev Pathol. 2011;14(4):273–279. doi: 10.2350/10-07-0872-OA.1.

18. Huynh J, Dawson D, Roberts D, et al. A systematic review of placental pathology in maternal diabetes mellitus. Placenta. 2015;36(2):101−114. doi: 10.1016/j.placenta.2014.11.021.

19. Xu L, Kanasaki K, Kitada M, Koya D. Diabetic angiopathy and angiogenic defects. Fibrogenesis Tissue Repair. 2012;5(1):13. doi: 10.1186/1755-1536-5-13.

20. Scifres CM, Parks WT, Feghali M, et al. Placental maternal vascular malperfusion and adverse pregnancy outcomes in gestational diabetes mellitus. Placenta. 2017;49:10−15. doi: 10.1016/j.placenta.2016.11.004.

21. Abdelhalim NY, Shehata MH, Gadallah HN, et al. Morphological and ultrastructural changes in the placenta of the diabetic pregnant Egyptian women. Acta Histochem. 2018;120(5):490−503. doi: 10.1016/j.acthis.2018.05.008.

22. Cetinkaya B, Ozmen A, Unek G, et al. Expressions of vegf, vegfr1, vegfr2 and akt in pregestational diabetic human placentas. Placenta. 2014;35(9):31. doi: 10.1016/j.placenta.2014.06.103.

23. Jauniaux E, Burton GJ. Villous histomorphometry and placental bed biopsy investigation in Type I diabetic pregnancies. Placenta. 2006;27(4-5):468−474. doi: 10.1016/j.placenta.2005.04.010.

24. Nelson SM, Coan PM, Burton GJ, et al. Placental structure in type 1 diabetes: relation to fetal insulin, leptin, and IGF-I. Diabetes. 2009;58(11):2634−2641. doi: 10.2337/db09-0739.

25. Rudge MV, Lima CP, Damasceno DC, et al. Histopathological placental lesions in mild gestational hyperglycemic and diabetic women. Diabetol Metab Syndr. 2011;3(1):19. doi: 10.1186/1758-5996-3-19.

26. Popova P, Vasilyeva L, Tkachuck A, et al. A Randomised, controlled study of different glycaemic targets during gestational diabetes treatment: effect on the level of adipokines in cord blood and ANGPTL4 expression in human umbilical vein endothelial cells. Int J Endocrinol. 2018;2018:6481658. doi: 10.1155/2018/6481658.

27. Popova PV, Vasileva LB, Tkachuk AS, et al. Association of tribbles homologue 1 gene expression in human umbilical vein endothelial cells with duration of intrauterine exposure to hyperglycaemia. Genet Res (Camb). 2018;100:e3. doi: 10.1017/S0016672318000010.

28. Sobrevia L, Abarzúa F, Nien JK, et al. Review: Differential placental macrovascular and microvascular endothelial dysfunction in gestational diabetes. Placenta. 2011;32 Suppl 2:S159−164. doi: 10.1016/j.placenta.2010.12.011.

29. Marzioni D, Tamagnone L, Capparuccia L, et al. Restricted innervation of uterus and placenta during pregnancy: evidence for a role of the repelling signal Semaphorin 3A. Dev Dyn. 2004;231(4):839−848. doi: 10.1002/dvdy.20178.

30. Nelson PG, Nelson KB. Innervation of the placenta and uterus: competition between cytotrophoblasts and nerves? Placenta. 2013;34(6):463−466. doi: 10.1016/j.placenta.2013.03.004.

31. Guzmán-Gutiérrez E, Arroyo P, Salsoso R, et al. Role of insulin and adenosine in the human placenta microvascular and macrovascular endothelial cell dysfunction in gestational diabetes mellitus. Microcirculation. 2014;21(1):26−37. doi: 10.1111/micc.12077.

32. Sobrevia L, Salsoso R, Sáez T, et al. Insulin therapy and fetoplacental vascular function in gestational diabetes mellitus. Exp Physiol. 2015;100(3):231−238. doi: 10.1113/expphysiol.2014.082743.

33. Дедов И.И., Смирнова О.М., Горелышев А.С. Стресс эндоплазматического ретикулума: цитологический сценарий патогенеза заболеваний человека // Проблемы эндокринологии. — 2012. — №5. — С. 57−65. [Dedov II, Smirnova OM, Gorelyshev AS. Stress of endoplasmic reticulum: the cytological «scenario» of pathogenesis of human diseases. Problemy endokrinologii. 2012;(5):57−65. (In Russ).]

34. Sáez PJ, Villalobos-Labra R, Westermeier F, et al. Modulation of endothelial cell migration by ER stress and insulin resistance: a role during maternal obesity? Front Pharmacol. 2014;5:189. doi: 10.3389/fphar.2014.00189.

35. Liong S, Lappas M. Endoplasmic reticulum stress is increased in adipose tissue of women with gestational diabetes. PLoS ONE. 2015;10(4):e0122633. doi: 10.1371/journal.pone.0122633.

36. Huynh J, Yamada J, Beauharnais C, et al. Type 1, type 2 and gestational diabetes mellitus differentially impact placental pathologic characteristics of uteroplacental malperfusion. Placenta. 2015;36(10):1161−1166. doi: 10.1016/j.placenta.2015.08.004.

37. Taricco E, Radaelli T, Rossi G, et al. Effects of gestational diabetes on fetal oxygen and glucose levels in vivo. BJOG. 2009;116(13):1729−1735. doi: 10.1111/j.1471-0528.2009.02341.x.

38. Grissa O, Yessoufou A, Mrisak I, et al. Growth factor concentrations and their placental mRNA expression are modulated in gestational diabetes mellitus: possible interactions with macrosomia. BMC Pregnancy Childbirth. 2010;10:7. doi: 10.1186/1471-2393-10-7.

39. Thunbo M, Sinding M, Bogaard P, et al. Postpartum placental CT angiography in normal pregnancies and in those complicated by diabetes mellitus. Placenta. 2018;69:20−25. doi: 10.1016/j.placenta.2018.06.309.

40. Khong TY, Mooney EE, Ariel I, et al. Sampling and definitions of placental lesions: Amsterdam Placental Workshop Group Consensus Statement. Arch Pathol Lab Med. 2016;140(7):698–713. doi: 10.5858/arpa.2015-0225-CC.

41. Whittington JR, Cummings KF, Ounpraseuth ST, et al. Placental changes in diabetic pregnancies and the contribution of hypertension. J Matern Fetal Neonatal Med. 2020;1−9. doi: 10.1080/14767058.2020.1724944.

42. Баринова И.В., Котов Ю.Б., Скляренко Г.А., и др. Диагностическая ценность массы плаценты как критерия функционального состояния фетоплацентарного комплекса // Российский вестник акушера-гинеколога. — 2010. — №10. — С. 3−6. [Barinova IV, Kotov YuB, Skliarenko GA, et al. Diagnostic value of placental mass as a criterion for the functional state of the fetoplacental complex. Russian Bulletin of Obstetrician-Gynecologist. 2010;(10):3−6. (In Russ).]

43. Unek G, Ozmen A, Mendilcioglu I, et al. Immunohistochemical distribution of cell cycle proteins p27, p57, cyclin D3, PCNA and Ki67 in normal and diabetic human placentas. J Mol Histol. 2014;45(1):21–34. doi: 10.1007/s10735-013-9534-3.

44. Hung TH, Chen SF, Lo LM, et al. Increased autophagy in placentas of intrauterine growth-restricted pregnancies. PLoS One. 2012;7(7):e40957. doi: 10.1371/journal.pone.0040957.

45. Levine B, Sinha S, Kroemer G. Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy. 2008;4(5):600–606. doi: 10.4161/auto.6260.

46. Hung TH, Huang SY, Chen SF, et al. Decreased placental apoptosis and autophagy in pregnancies complicated by gestational diabetes with large-for-gestational age fetuses. Placenta. 2020;90:27−36. doi: 10.1016/j.placenta.2019.12.003.

47. Kamana KC, Shakya S, Zhang H. Gestational diabetes mellitus and macrosomia: a literature review. Ann Nutr Metab. 2015;66(Suppl 2):14–20. doi: 10.1159/000371628.

48. Пакин В.С., Вашукова Е.С., Капустин Р.В., и др. Оценка уровня микроРНК в плаценте при тяжелом гестозе на фоне гестационного сахарного диабета // Журнал акушерства и женских болезней. — 2017. — Т.66. — №3. — С. 110–115. [Pakin V, Vashukova E, Kapustin R, et al. Peculiarities of placental microRNA expression in pregnancies complicated by gestational diabetes mellitus and preeclampsia. Journal of obstetrics and women’s diseases. 2017;66(3):110–115. (In Russ).] doi: 10.17816/JOWD663110-115.

49. Hoch D, Gauster M, Hauguel-de Mouzon S, et al. Diabesity-associated oxidative and inflammatory stress signalling in the early human placenta. Mol Aspects Med. 2019;66:21–30. doi: 10.1016/j.mam.2018.11.002.

50. Lassance L, Haghiac M, Minium J, et al. Obesity-induced down-regulation of the mitochondrial translocator protein (TSPO) impairs placental steroid production. J Clin Endocrinol Metab. 2015;100(1):E11–18. doi: 10.1210/jc.2014-2792.

51. Frohlich JD, Huppertz B, Abuja PM, et al. Oxygen modulates the response of first-trimester trophoblasts to hyperglycemia. Am J Pathol. 2012;180(1):153–164. doi: 10.1016/j.ajpath.2011.09.012.

52. Desoye G, Nolan CJ. The fetal glucose steal: an underappreciated phenomenon in diabetic pregnancy. Diabetologia. 2016;59(6):1089–1094. doi: 10.1007/s00125-016-3931-6.

53. Sovio U, Murphy HR, Smith GC. Accelerated fetal growth prior to diagnosis of gestational diabetes mellitus: a prospective cohort study of nulliparous women. Diabetes Care. 2016;39(6):982–987. doi: 10.2337/dc16-0160.

54. Hirschmugl B, Desoye G, Catalano P, et al. Maternal obesity modulates intracellular lipid turnover in the human term placenta. Int J Obes. 2017;41(2):317–323. doi: 10.1038/ijo.2016.188.

55. Stirm L, Kovarova M, Perschbacher S, et al. BMI-independent effects of gestational diabetes on human placenta. J Clin Endocrinol Metab. 2018;103(9):3299–309. doi: 10.1210/jc.2018-00397.

56. Mead EJ, Maguire JJ, Kuc RE, et al. Kisspeptins: a multifunctional peptide system with a role in reproduction, cancer and the cardiovascular system. Br J Pharmacol. 2009;151(8):1143–1153. doi: 10.1038/sj.bjp.0707295.

57. Cartwright JE, Williams PJ. Altered placental expression of kisspeptin and its receptor in pre-eclampsia. J Endocrinol. 2012;214(1):79–85. doi: 10.1530/JOE-12-0091.

58. Kapustin RV, Drobintseva AO, Alekseenkova EN, et al. Placental protein expression of kisspeptin-1 (KISS1) and the kisspeptin-1 receptor (KISS1R) in pregnancy complicated by diabetes mellitus or preeclampsia. Arch Gynecol Obstet. 2020;301(2):437−445. doi: 10.1007/s00404-019-05408-1.


Supplementary files

Review

For citations:


Grigoryan O.R., Absatarova Yu.S., Mikheev R.K., Andreeva E.N. Comparative morphofunctional analysis of the state of fetoplacental complex in diabetes mellitus (literature review). Problems of Endocrinology. 2020;66(2):85-92. (In Russ.) https://doi.org/10.14341/probl12399

Views: 4394


ISSN 0375-9660 (Print)
ISSN 2308-1430 (Online)