Preview

Problems of Endocrinology

Advanced search

The role of non-coding RNAs in the pathogenesis of multiple endocrine neoplasia syndrome type 1

https://doi.org/10.14341/probl12413

Abstract

Changes in the expression of non-coding ribonucleic acids (ncRNAs) take part in the formation of various tumors. Multiple endocrine neoplasia syndrome type 1 (MEN1) is a rare autosomal dominant disease caused by mutations of the MEN1 gene encoding the menin protein. This syndrome is characterized by the occurrence of parathyroid tumors, gastroenteropancreatic neuroendocrine tumors, pituitary adenomas, as well as other endocrine and non-endocrine tumors. The pathogenesis of MEN-1 associated tumors due to MEN1 mutations remains unclear. In the absence of mutations of the MEN1 gene in patients with phenotypically similar features, this condition is regarded as a phenocopy of this syndrome. The cause of the combination of several MEN-1-related tumors in these patients remains unknown. The possible cause is that changes in the expression of ncRNAs affect the regulation of signaling pathways in which menin participates and may contribute to the development of MEN-1-related tumors. The identification of even a small number of agents interacting with menin makes a significant contribution to the improvement of knowledge about its pathophysiological influence and ways of developing tumors within the MEN-1 syndrome and its phenocopies.

About the Authors

Elizaveta O. Mamedova
Endocrinology Research Centre
Russian Federation

MD, PhD



Diana A. Dimitrova
Endocrinology Research Centre
Russian Federation

M.D.



Zhanna E. Belaya
Endocrinology Research Centre
Russian Federation

MD, PhD, Professor



Galina A. Melnichenko
Endocrinology Research Centre
Russian Federation

MD, PhD, Professor



References

1. Thakker R, Newey P, Walls G, et al. Clinical practice guidelines for multiple endocrine neoplasia Type 1 (MEN1). J Clin Endocrinol Metab. 2012;97(9):2990–3011. doi: 10.1210/jc.2012-1230.

2. Рожинская Л.Я., Хандаева П.М., Луценко А.С., и др. Рецидив аденомы гипофиза с изменением гормональной активности у пациентки с синдромом множественной эндокринной неоплазии 1-го типа // Альманах клинической медицины. — 2018. — Т.46. — №3. — С. 270–275. [Rozhinskaya LY, Khandaeva PM, Lutsenko AS, et al. Relapse of the pituitary adenoma with a change of its hormonal activity in a female patient with multiple endocrine neoplasia syndrome type 1. Almanac of Clinical Medicine. 2018;46(3):270–275. (In Russ).] doi: 10.18786/2072-0505-2018-46-3-270-275.

3. Larsson C, Skogseid B, Oberg K, et al. Multiple endocrine neoplasia type 1 gene maps to chromosome 11 and is lost in insulinoma. Nature. 1988;332(6159):85–87. doi: 10.1038/332085a0.

4. Chandrasekharappa SC, Guru SC, Manickam P, et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science. 1997;276(5311):404–407. doi: 10.1126/science.276.5311.404.

5. Falchetti A. Genetics of multiple endocrine neoplasia type 1 syndrome: what’s new and what’s old. F1000Res. 2017;6(73):F1000 Faculty Rev-73. doi: 10.12688/f1000research.7230.1.

6. Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. 1971;68(4):820–823. doi: 10.1073/pnas.68.4.820.

7. Lemos MC, Thakker RV. Multiple endocrine neoplasia type 1 (MEN1): analysis of 1336 mutations reported in the first decade following identification of the gene. Hum Mutat. 2008;29(1):22–32. doi: 10.1002/humu.20605.

8. Costa-Guda J, Arnold A. Genetic and epigenetic changes in sporadic endocrine tumors: parathyroid tumors. Mol Cell Endocrinol. 2014;386(1-2):46–54. doi: 10.1016/j.mce.2013.09.005.

9. Jiao Y, Shi C, Edil BH, et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science. 2011;331(6021):1199–1203. doi: 10.1126/science.1200609.

10. Corbo V, Dalai I, Scardoni M, et al. MEN1 in pancreatic endocrine tumors: analysis of gene and protein status in 169 sporadic neoplasms reveals alterations in the vast majority of cases. Endocr Relat Cancer. 2010;17(3):771–783. doi: 10.1677/ERC-10-0028.

11. Karhu A, Aaltonen LA. Susceptibility to pituitary neoplasia related to MEN-1, CDKN1B and AIP mutations: an update. Hum Mol Genet. 2007;16 Spec No 1:R73–79. doi: 10.1093/hmg/ddm036.

12. Evans CO, Brown MR, Parks JS, et al. Screening for MEN1 tumor suppressor gene mutations in sporadic pituitary tumors. J Endocrinol Invest. 2000;23(5):304–309. doi: 10.1007/BF03343727.

13. Görtz B, Roth J, Speel EJ, et al. MEN1 gene mutation analysis of sporadic adrenocortical lesions. Int J Cancer. 1999;80(3):373–379. doi: 10.1002/(sici)1097-0215(19990129)80:3<373::aid-ijc7>3.0.co;2-b.

14. Falchetti A, Brandi ML. Multiple endocrine neoplasia type I variants and phenocopies: more than a nosological issue? J Clin Endocrinol Metab. 2009;94(5):1518–1520. doi: 10.1210/jc.2009-0494.

15. Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358(11):1148–1159. doi: 10.1056/NEJMra072067.

16. De Paoli-Iseppi R, Prentice L, Marthick JR, et al. Multiple endocrine neoplasia type 1: clinical correlates of MEN1 gene methylation. Pathology. 2018;50(6):622–628. doi: 10.1016/j.pathol.2018.05.006.

17. Alrezk R, Hannah-Shmouni F, Stratakis CA. MEN4 and CDKN1B mutations: the latest of the MEN syndromes. Endocr Relat Cancer. 2017;24(10):T195–T208. doi: 10.1530/ERC-17-0243.

18. Turner JJ, Christie PT, Pearce SH, et al. Diagnostic challenges due to phenocopies: lessons from Multiple Endocrine Neoplasia type1 (MEN1). Hum Mutat. 2010;31(1):E1089–1101. doi: 10.1002/humu.21170.

19. Мамедова Е.О., Мокрышева Н.Г., Пржиялковская Е.Г., и др. Варианты и фенокопии синдрома множественных эндокринных неоплазий 1 типа // Терапевтический архив. — 2014. — Т.86. — №10. — С. 87–91. [Mamedova EO, Mokrysheva NG, Przhiialkovskaia EG, et al. Multiple endocrine neoplasia type 1 variants and phenocopies. Ter Arkh. 2014;86(10):87–91. (In Russ).]

20. Matkar S, Thiel A, Hua X. Menin: a scaffold protein that controls gene expression and cell signaling. Trends Biochem Sci. 2013;38(8):394–402. doi: 10.1016/j.tibs.2013.05.005.

21. Agarwal SK. The future: genetics advances in MEN1 therapeutic approaches and management strategies. Endocr Relat Cancer. 2017;24(10):T119–T134. doi: 10.1530/ERC-17-0199.

22. Dreijerink KM, Timmers HT, Brown M. Twenty years of menin: emerging opportunities for restoration of transcriptional regulation in MEN1. Endocr Relat Cancer. 2017;24(10):T135–T145. doi: 10.1530/ERC-17-0281.

23. Kaji H, Canaff L, Lebrun JJ, et al. Inactivation of menin, a Smad3-interacting protein, blocks transforming growth factor type beta signaling. Proc Natl Acad Sci U S A. 2001;98(7):3837–3842. doi: 10.1073/pnas.061358098.

24. Kaji H. Menin and bone metabolism. J Bone Miner Metab. 2012;30(4):381–387. doi: 10.1007/s00774-012-0355-3.

25. Chen G, Wang M, Farley S, et al. Menin promotes the Wnt signaling pathway in pancreatic endocrine cells. Mol Cancer Res. 2008;6(12):1894–907. doi: 10.1158/1541-7786.MCR-07-2206.

26. Imachi H, Murao K, Dobashi H, et al. Menin, a product of the MENI gene, binds to estrogen receptor to enhance its activity in breast cancer cells: possibility of a novel predictive factor for tamoxifen resistance. Breast Cancer Res Treat. 2010;122(2):395–407. doi: 10.1007/s10549-009-0581-0.

27. Dreijerink KM, Varier RA, van Beekum O, et al. The multiple endocrine neoplasia type 1 (MEN1) tumor suppressor regulates peroxisome proliferator-activated receptor gamma-dependent adipocyte differentiation. Mol Cell Biol. 2009;29(18):5060–5069. doi: 10.1128/MCB.01001-08.

28. Dreijerink KM, Varier RA, van Nuland R, et al. Regulation of vitamin D receptor function in MEN1-related parathyroid adenomas. Mol Cell Endocrinol. 2009;313(1-2):1–8. doi: 10.1016/j.mce.2009.08.020.

29. Wu Y, Feng ZJ, Gao SB, et al. Interplay between menin and K-Ras in regulating lung adenocarcinoma. J Biol Chem. 2012;287(47):40003–40011. doi: 10.1074/jbc.M112.382416.

30. Feng ZJ, Gao SB, Wu Y, et al. Lung cancer cell migration is regulated via repressing growth factor PTN/RPTP β/ζ signaling by menin. Oncogene. 2010;29(39):5416–5426. doi: 10.1038/onc.2010.282.

31. Wang Y, Ozawa A, Zaman S, et al. The tumor suppressor protein menin inhibits AKT activation by regulating its cellular localization. Cancer Res. 2011;71(2):371–382. doi: 10.1158/0008-5472.CAN-10-3221.

32. Wuescher L, Angevine K, Hinds T, et al. Insulin regulates menin expression, cytoplasmic localization, and interaction with FOXO1. Am J Physiol Endocrinol Metab. 2011;301(3):E474–E483. doi: 10.1152/ajpendo.00022.2011.

33. Gurung B, Feng Z, Iwamoto DV, et al. Menin epigenetically represses Hedgehog signaling in MEN1 tumor syndrome. Cancer Res. 2013;73(8):2650–2658. doi: 10.1158/0008-5472.CAN-12-3158.

34. Hughes E, Huang C. Participation of Akt, menin, and p21 in pregnancy-induced beta-cell proliferation. Endocrinology. 2011;152(3):847–855. doi: 10.1210/en.2010-1250.

35. Mensah-Osman E, Zavros Y, Merchant JL. Somatostatin stimulates menin gene expression by inhibiting protein kinase A. Am J Physiol Gastrointest Liver Physiol. 2008;295(4):G843–G854. doi: 10.1152/ajpgi.00607.2007.

36. Zhang H, Li W, Wang Q, et al. Glucose-mediated repression of menin promotes pancreatic β-cell proliferation. Endocrinology. 2012;153(2):602–611. doi: 10.1210/en.2011-1460.

37. Feng Z, Ma J, Hua X. Epigenetic regulation by the menin pathway. Endocr Relat Cancer. 2017;24(10):T147–T159. doi: 10.1530/ERC-17-0298.

38. Iyer S, Agarwal SK. Epigenetic regulation in the tumorigenesis of MEN1-associated endocrine cell types. J Mol Endocrinol. 2018;61(1):R13–R24. doi: 10.1530/JME-18-0050.

39. Macfarlane LA, Murphy PR. MicroRNA: biogenesis, function and role in cancer. Curr Genomics. 2010;11(7):537–561. doi: 10.2174/138920210793175895.

40. Kung JT, Colognori D, Lee JT. Long noncoding RNAs: past, present, and future. Genetics. 2013;193(3):651–669. doi: 10.1534/genetics.112.146704.

41. Di Ieva A, Butz H, Niamah M, et al. MicroRNAs as biomarkers in pituitary tumors. Neurosurgery. 2014;75(2):181–189. doi: 10.1227/NEU.0000000000000369.

42. Corbetta S, Vaira V, Guarnieri V, et al. Differential expression of microRNAs in human parathyroid carcinomas compared with normal parathyroid tissue. Endocr Relat Cancer. 2010;17(1):135–146. doi: 10.1677/ERC-09-0134.

43. Szabó PM, Butz H, Igaz P, et al. Minireview: miRomics in endocrinology: a novel approach for modeling endocrine diseases. Mol Endocrinol. 2013;27(4):573–585. doi: 10.1210/me.2012-1220.

44. Herranz H, Cohen SM. MicroRNAs and gene regulatory networks: managing the impact of noise in biological systems. Genes Dev. 2010;24(13):1339–1344. doi: 10.1101/gad.1937010.

45. Luzi E, Marini F, Giusti F, et al. The negative feedback-loop between the oncomir Mir-24-1 and menin modulates the Men1 tumorigenesis by mimicking the «Knudson’s second hit». PLoS One. 2012;7(6):e39767. doi: 10.1371/journal.pone.0039767.

46. Vijayaraghavan J, Maggi EC, Crabtree JS. miR-24 regulates menin in the endocrine pancreas. Am J Physiol Endocrinol Metab. 2014;307(1):E84–92. doi: 10.1152/ajpendo.00542.2013.

47. Ehrlich L, Hall C, Venter J, et al. MiR-24 inhibition increases menin expression and decreases cholangiocarcinoma proliferation. Am J Pathol. 2017;187(3):570–580. doi: 10.1016/j.ajpath.2016.10.021.

48. Luzi E, Marini F, Ciuffi S, et al. An autoregulatory network between menin and pri-miR-24-1 is required for the processing of its specific modulator miR-24-1 in BON1 cells. Mol BioSyst. 2016;12(6):1922–1028. doi: 10.1039/c6mb00118a.

49. Luzi E, Marini F, Tognarini I, et al. The regulatory network menin-microRNA 26a as a possible target for RNA-based therapy of bone diseases. Nucleic Acid Ther. 2012;22(2):103–108. doi: 10.1089/nat.2012.0344.

50. Li Y, Li W, Zhang JG, et al. Downregulation of tumor suppressor menin by miR-421 promotes proliferation and migration of neuroblastoma. Tumour Biol. 2014;35(10):10011–10017. doi: 10.1007/s13277-014-1921-1.

51. Lu Y, Fei XQ, Yang SF, et al. Glucose-induced microRNA-17 promotes pancreatic beta cell proliferation through down-regulation of Menin. Eur Rev Med Pharmacol Sci. 2015;19(4):624–629.

52. Hou R, Yang Z, Wang S, et al. miR-762 can negatively regulate menin in ovarian cancer. Onco Targets Ther. 2017;10:2127–2137. doi: 10.2147/OTT.S127872.

53. Gurung B, Muhammad AB, Hua X. Menin is required for optimal processing of the microRNA let-7a. J Biol Chem. 2014;289(14):9902–9908. doi: 10.1074/jbc.M113.520692.

54. Ouyang M, Su W, Xiao L, et al. MiR-29b modulates intestinal epithelium homeostasis by repressing menin translation. Biochem J. 2015;465(2):315–323. doi: 10.1042/BJ20141028.

55. Luzi E, Ciuffi S, Marini F, et al. Analysis of differentially expressed microRNAs in MEN1 parathyroid adenomas. Am J Transl Res. 2017;9(4):1743–1753.

56. Grolmusz VK, Borka K, Kövesdi A, et al. MEN1 mutations and potentially MEN1-targeting miRNAs are responsible for menin deficiency in sporadic and MEN1 syndrome-associated primary hyperparathyroidism. Virchows Arch. 2017;471(3):401–411. doi: 10.1007/s00428-017-2158-3.

57. Lines KE, Newey PJ, Yates CJ, et al. MiR-15a/miR-16-1 expression inversely correlates with cyclin D1 levels in Men1 pituitary NETs. J Endocrinol. 2018;240(1):41–50. doi: 10.1530/JOE-18-0278.

58. Nagy Z, Szabó PM, Grolmusz VK, et al. MEN1 and microRNAs: The link between sporadic pituitary, parathyroid and adrenocortical tumors? Med Hypotheses. 2017;99:40–44. doi: 10.1016/j.mehy.2016.12.007.

59. Boyle B, Butz H, Liko I, et al. Expression of glucocorticoid receptor isoforms in human adrenocortical adenomas. Steroids. 2010;75(10):695–700. doi: 10.1016/j.steroids.2010.04.008.

60. Kopp F, Mendell JT. Functional classification and experimental dissection of Long Noncoding RNAs. Cell. 2018;172(3):393–407. doi: 10.1016/j.cell.2018.01.011.

61. Cao J. The functional role of long non-coding RNAs and epigenetics. Biol Proced Online. 2014;16:11. doi: 10.1186/1480-9222-16-11.

62. Modali SD, Parekh VI, Kebebew E, et al. Epigenetic regulation of the lncRNA MEG3 and its target c-MET in pancreatic neuroendocrine tumors. Mol Endocrinol. 2015;29(2):224–237. doi: 10.1210/me.2014-1304.


Supplementary files

Review

For citations:


Mamedova E.O., Dimitrova D.A., Belaya Zh.E., Melnichenko G.A. The role of non-coding RNAs in the pathogenesis of multiple endocrine neoplasia syndrome type 1. Problems of Endocrinology. 2020;66(2):4-12. https://doi.org/10.14341/probl12413

Views: 2223


ISSN 0375-9660 (Print)
ISSN 2308-1430 (Online)