Androgens and Antiandrogens influence on COVID-19 disease in men
https://doi.org/10.14341/probl12500
Abstract
The WHO has declared a SARS-CoV-2 pandemic. During a pandemic, the researches aimed at finding the new treatments for SARS-CoV-2 become relevant. The review focuses on studies of androgens and antiandrogens in this disease. Since the beginning of the COVID-19 epidemic, it has been noted that men have more severe forms of infection and higher mortality. The main cause of both the severity of the disease and the high mortality of men from COVID-19 are associated with androgens. It was found that patients receiving androgen deprivation are less likely to become infected and easily tolerate COVID-19. The researchers explain the effect of the therapy by the effect on the TMPRSS2 protein. It was found that both TMPRSS2 expression and a more severe course of coronavirus infection are observed in men with hyperandrogenism – androgenic alopecia, acne, excessive facial hair growth and increased skin oiliness. In this regard, some researchers suggest to use androgen deprivation for men at high risk of developing COVID-19. Steroid and non-steroidal antiandrogens are used for androgen deprivation. At the same time, obtaned scientific data on the relationship of severe forms and mortality of COVID-19 with low testosterone levels leads to a hypothesis about the possibility of a positive effect not of androgen devrivation therapy but of androgen replacement therapy in case of hypogonadism have diagnosed. These studies have not been completed recently, and data on the effectiveness and safety of antiandrogens and androgens in the treatment of a new coronavirus infection require clarification.
About the Authors
Roman V. RozhivanovRussian Federation
MD, PhD; ORCID: 0000-0002-5386-4289; eLibrary SPIN: 8052-3310
11 Dm. Ulyanova street, 117036 Moscow
Elena N. Andreeva
Russian Federation
MD, PhD, Professor; ORCID: 0000-0001-8425-0020; eLibrary SPIN: 1239-2937
Moscow
Galina A. Melnichenko
Russian Federation
MD, PhD, Professor; ORCID: 0000-0002-5634-7877; eLibrary SPIN: 8615-0038
Moscow
Natalya G. Mokrysheva
Russian Federation
MD, PhD, Professor; ORCID: 0000-0002-9717-9742; eLibrary SPIN: 5624-3875
Moscow
References
1. Vremennye metodicheskie rekomendatzii «Profilactika, diagnostika i lechenie novoy koronovirusnoy infektzii (COVID-19)». Versiya 6.0 (28.04.2020). Moscow: Ministry of health of the Russian Federation. 165 p. (In Russ.).
2. Wu P, Hao X, Lau EH, et al. Real-time tentative assessment of the epidemiological characteristics of novel coronavirus infections in Wuhan, China, as at 22 January 2020. Euro Surveill. 2020;25(3):2000044. doi: 10.2807/1560-7917.ES.2020.25.3.2000044.
3. Li X, Zai J, Wang X, Li Y. Potential of large ‘first generation’ human-tohuman transmission of 2019-nCoV. J Med Virol. 2020;92(4):448−454 doi: 10.1002/jmv.25693.
4. World Health Organization. Infection prevention and control guidance for long-term care facilities in the context of COVID-19: interim guidance, 21 March 2020. World Health Organization; 2020.
5. Phylogeny of SARS-like betacoronaviruses including novel coronavirus SARS-CoV-2. Available from: https://nextstrain.org/groups/blab/sars-like-cov.
6. Phan LT, Nguyen TV, Luong QC, et al. Importation and human-tohuman transmission of a novel coronavirus in Vietnam. N Engl J Med. 2020;382(9):872−874. doi: 10.1056/nejmc2001272.
7. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507−513. doi: 10.1016/S0140-6736(20)30211-7.
8. Zhang L, Liu Y. Potential interventions for novel coronavirus in China: A systematic review. J Med Virol. 2020;92(5):479−490. doi: 10.1002/jmv.25707.
9. Huang C, Wang Y, Li X, et al. Cinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497−506. doi: 10.1016/S0140-6736(20)30183-5.
10. Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci Trends. 2020;14(1):69−71. doi: 10.5582/bst.2020.01020.
11. Wambier CG, Goren A. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is likely to be androgen mediated. J Am Acad Dermatol. 2020;83(1):308–309. doi: 10.1016/j.jaad.2020.04.032.
12. Manning JT, Fink B. Digit ratio, nicotine and alcohol intake and national rates of smoking and alcohol consumption. Pers Individ Differ. 2011;50(3):344–348. doi: 10.1016/j.paid.2010.10.016.
13. Wambier CG, Goren A, Vaсo-Galvan S, et al. Androgen sensitivity gateway to COVID-19 disease severity. Drug Dev Res. 2020:10.1002/ddr.21688. doi: 10.1002/ddr.21688.
14. Bupp MR, Jorgensen TN. Androgen-Induced Immunosuppression. Front Immunol. 2018;9:794. doi: 10.3389/fimmu.2018.00794.
15. Trigunaite A, Dimo J, Jorgensen TN, et al. Suppressive effects of androgens on the immune system. Cell Immunol. 2015;294(2):87−94. doi: 10.1016/j.cellimm.2015.02.004.
16. Trumble BC, Blackwell AD, Stieglitz J, et al. Associations between male testosterone and immune function in a pathogenically stressed forager-horticultural population. Am J Phys Anthropol. 2016;161(3):494−505. doi: 10.1002/ajpa.23054.
17. Posma E, Moes H, Heineman MJ, Faas MM. The effect of testosterone on cytokine production in the specific and non-specific immune response. Am J Reprod Immunol. 2004;52(4):237−243. doi: 10.1111/j.1600-0897.2004.00216.x.
18. Rozhivanov RV. Syndrome of hypogonadism in males. Obesity and metabolism. 2014;11(2):24−31. (In Russ.). doi: 10.14341/OMET2014230-34.
19. Dedov II, Mel’nichenko GA, Shestakova MV, et al. Guidelines for the Diagnosis and Treatment of testosterone deficiency (hypogonadism) in male patients with diabetes mellitus. Obesity and metabolism. 2017;14(4):83−92. (In Russ.). doi: 10.14341/OMET2017483-92.
20. Rastrelli G, Di Stasi V, Inglese F, et al. Low testosterone levels predict clinical adverse outcomes in SARS-CoV-2 pneumonia patients. Andrology. 2020;10.1111/andr.12821. doi: 10.1111/andr.12821.
21. Manning JT, Fink B. Understanding COVID-19: Digit ratio (2D:4D) and sex differences in national case fatality rates. Early Hum Dev. 2020;146:105074. doi: 10.1016/j.earlhumdev.2020.105074.
22. Montopoli M, Zumerle S, Vettor R, et al. Androgen-deprivation therapies for prostate cancer and risk of infection by SARS-CoV-2: a population-based study (n=4532). Ann Oncol. 2020;31(8):1040−1045. doi: 10.1016/j.annonc.2020.04.479.
23. Lucas JM, Heinlein C, Kim T, et al. The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis. Cancer Discov. 2014;4(11):1310–1325. doi: 10.1158/2159-8290.CD-13-1010.
24. Heurich A, Hofmann-Winkler H, Gierer S, et al. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J Virol. 2014;88(2):1293–1307. doi: 10.1128/JVI.02202-13.
25. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271−280.e8. doi: 10.1016/j.cell.2020.02.052.
26. Choi SY, Bertram S, Glowacka I, et al. Type II transmembrane serine proteases in cancer and viral infections. Trends Mol Med. 2009;15(7):303−312. doi: 10.1016/j.molmed.2009.05.003.
27. Mikkonen L, Pihlajamaa P, Sahu B, et al. Androgen receptor and androgen-dependent gene expression in lung. Mol Cell Endocrinol. 2010;317(1-2):14−24. doi: 10.1016/j.mce.2009.12.022.
28. Sudhakar HH, Manjunatha R, Madhusudhana HR. Relationship between second to fourth digit ratios and benign prostatic hyperplasia in aging men. J Clin Diagn Res. 2015;9(5):PC1-3. doi: 10.7860/JCDR/2015/11992.5937.
29. Chen J, Jiang Q, Xia X, et al. Individual variation of the SARS-CoV2 receptor ACE2 gene expression and regulation. Aging Cell. 2020:19(7):e13168. doi: 10.1111/acel.13168.
30. Douglas GC, O’Bryan MK, Hedger MP, et al. The novel angiotensinconverting enzyme (ACE) homolog, ACE2, is selectively expressed by adult Leydig cells of the testis. Endocrinology. 2004;145(10):4703–4711. doi: 10.1210/en.2004-0443.
31. Ma L, Xie W, Li D, et al. Effect of SARS-CoV-2 infection upon male gonadal function: A single center-based study. medRxiv. 2020. doi: 10.1101/2020.03.21.20037267.
32. Sama IE, Ravera A, Santema BT, et al. Circulating plasma concentrations of angiotensin-converting enzyme 2 in men and women with heart failure and effects of renin-angiotensin-aldosterone inhibitors. Eur Heart J. 2020;41(19):1810−1817. doi: 10.1093/eurheartj/ehaa373.
33. Wambier CG, Goren A, Nau G, Ossimetha A. Androgen-driven COVID-19 pandemic theory. Preprint. 2020. doi: 10.13140/RG.2.2.21254.11848.
34. Wambier CG, Vaсo-Galvan S, McCoy J, et al. Androgenetic alopecia present in the majority of hospitalized COVID-19 Patients the «Gabrin sign». J Am Acad Dermatol. 2020;83(2):680−682. doi: 10.1016/j.jaad.2020.05.079.
35. McCoy J, Wambier CG, Vano-Galvan S, et al. Racial variations in COVID-19 deaths may be due to androgen receptor genetic variants associated with prostate cancer and androgenetic alopecia. Are anti-androgens a potential treatment for COVID-19? J Cosmet Dermatol. 2020;19(7):1542−1543. doi: 10.1111/jocd.13455.
36. Perversev OS, Kogan MI. Rak prostaty. Monografia. Harkov: Fact; 2004. 231 p. (In Russ.).
37. Cadegiani FA. Can spironolactone be used to prevent COVID19-induced acute respiratory distress syndrome in patients with hypertension? Am J Physiol Endocrinol Metab. 2020;318(5):E587−E588. doi: 10.1152/ajpendo.00136.2020.
38. Yavas G, Yavas C, Celik E, et al. The impact of spironolactone on the lung injury induced by concomitant trastuzumab and thoracic radiotherapy. Int J Radiat Res. 2019;17(1):87−95. doi: 10.18869/acadpub.ijrr.17.1.87.
39. Ji WJ, Ma YQ, Zhou X, et al. Spironolactone attenuates bleomycin-induced pulmonary injury partially via modulating mononuclear phagocyte phenotype switching in circulating and alveolar compartments. PLOS ONE. 2013;8(11):e81090. doi: 10.1371/journal.pone.0081090.
40. Katzung & Trevor’s Pharmacology Examination and Board Review. 12th ed. McGraw-Hill Education; 2018. 592 p.
41. Schroeder M, Tuku B, Jarczak D, et al. The majority of male patients with COVID-19 present low testosterone levels on admission to Intensive Care in Hamburg, Germany: a retrospective cohort study. 2020. medRxiv preprint doi: https://doi.org/10.1101/2020.05.07.20073817
42. Pozzilli P and Lenzi A Testosterone, a key hormone in the context of COVID-19 pandemic, Metabolism (2020), https://doi.org/10.1016/j.metabol.2020.154252
Supplementary files
Review
For citations:
Rozhivanov R.V., Andreeva E.N., Melnichenko G.A., Mokrysheva N.G. Androgens and Antiandrogens influence on COVID-19 disease in men. Problems of Endocrinology. 2020;66(4):77-81. (In Russ.) https://doi.org/10.14341/probl12500

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).