Endocrine late-effects and bone mineral density after combined treatment of malignant brain tumors in childhood and adolescence
https://doi.org/10.14341/probl12680
Abstract
Background. The implementation of standardized protocols for combined treatment of cancer into clinical practice inevitably leads to a long-term consequence.
Aims. To study the prevalence of endocrine disorders, to assess the prevalence and degree of decline of bone mineral density (BMD) in individuals who have undergone combined treatment of malignant brain tumors in childhood and adolescence.
Materials and methods. A retrospective study was conducted with 59 young adults (31 men; 28 women) who have undergone surgical treatment of malignant brain tumour followed by radiation treatment (craniospinal radiation in combination with or without polychemotherapy). Group I consisted of 37 patients, who were treated between the ages of 3 and 16 years. Group II included 22 patients who received treatment between the ages of 16 and 38 years.
Results. GH deficiency according to the results of the insulin hypoglycemia test was diagnosed in 48 patients (81%), 22 patients had secondary adrenal insufficiency (37%). The majority of those examined (33 patients (56%)) did not achieve the target growth. Only 5 people from I group was treated with recombinant GH. Correlation analysis demonstrates that age of treatment is the main factor affecting final growth (r=0,619, p<0,001). Many cases of hypothyroidism (n=39 (66%)) and hypogonadism (19 women; 17 men) were detected. According to the DXA, a decrease of BMD ≤-2.0 SD (Z-score) in L1–L4 was found in 35 of 59 patients (59%). The BMD in the I group was significantly lower than in patients treated at an older age (p<0.001). A moderate correlation was discovered between BMD in L1–L4 at the time of examination and the level of estradiol in women (r=0.596, p<0.05) and testosterone in men (r=0.472, p<0.05). Direct correlation between BMD and age of diagnosis was revealed (r=0.781, p<0.01).
Conclusions. The results show that patients need to be monitored annually and for life after the combined treatment of malignant brain tumors in order to detect the long-term effects of the treatment. The high incidence of osteopenic conditions determines the relevance and need for early diagnosis to prevent further bone loss, reduced bone strength and the risk of fractures.
About the Authors
O. O. GolouninaRussian Federation
Olga O. Golounina
8-2 Trubetskaya street, 119991 Moscow
eLibrary SPIN: 7793-2123
M. G. Pavlova
Russian Federation
Maria G. Pavlova, MD, PhD
Moscow
eLibrary SPIN: 2205-1288
Z. E. Belaya
Russian Federation
Zhanna E. Belaya, MD, PhD, Professor
Moscow
eLibrary SPIN: 4746-7173
E. I. Kim
Russian Federation
Ekaterina I. Kim
Moscow
eLibrary SPIN: 1628-2139
I. V. Glinkina
Russian Federation
Irina V. Glinkina, MD, PhD
Moscow
eLibrary SPIN: 2731-2400
T. B. Morgunova
Russian Federation
Tatiana B. Morgunova, MD, PhD
Moscow
eLibrary SPIN: 3705-8599
N. A. Mazerkina
Russian Federation
Nadezhda A. Mazerkina, MD, PhD
Moscow
eLibrary SPIN:1012-2923
O. G. Zheludkova
Russian Federation
Olga G. Zheludkova, MD, PhD, Professor
Moscow
eLibrary SPIN: 4850-7788
V. V. Fadeev
Russian Federation
Valentin V. Fadeyev, MD, PhD, Professor
Moscow
eLibrary SPIN: 6825-8417
References
1. Kaprin A.D. Zlokachestvennye novoobrazovaniya v Rossii v 2018 godu (zabolevaemost’ i smertnost’). Ed. by AD Kaprin, VV Starinsky, GV Petrova. Moscow: MNIOI im. P.A. Gertsena 2019; 250 p. (In Russ.).
2. Kristensen BW, Priesterbach-Ackley LP, Petersen JK, Wesseling P. Molecular pathology of tumors of the central nervous system. Ann Oncol. 2019;30(8):1265-1278. doi: https://doi.org/10.1093/annonc/mdz164
3. Juraschka K, Taylor MD. Medulloblastoma in the age of molecular subgroups: a review. J Neurosurg Pediatr. 2019;24(4):353-363. doi: https://doi.org/10.3171/2019.5.PEDS18381
4. Komori T. The 2016 WHO Classification of Tumours of the Central Nervous System: The Major Points of Revision. Neurol Med Chir (Tokyo). 2017;57(7):301-311. doi: https://doi.org/10.2176/nmc.ra.2017-0010
5. Gubernatorova EE, Pavlova MG, Melnichenko GA, et al. Endocrine and reproductive abnormalities in the men treated for medulloblastoma and acute lymphoblastic leukemia in the childhood. Problems of Endocrinology. 2014;60(1):18–23. (In Russ.). doi: https://doi.org/10.14341/probl201460118-23
6. Gajjar A, Chintagumpala M, Ashley D, et al. Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. Lancet Oncol. 2006;7(10):813-820. doi: https://doi.org/10.1016/S1470-2045(06)70867-1
7. Gottardo NG, Hansford JR, McGlade JP, et al. Medulloblastoma Down Under 2013: a report from the third annual meeting of the International Medulloblastoma Working Group. Acta Neuropathol. 2014;127(2):189-201. doi: https://doi.org/10.1007/s00401-013-1213-7
8. Kim EI, Golounina OO, Pavlova MG, et al. Effect of complex therapy of medulloblastoma in childhood and adolescence on bone mineral density. Osteoporosis and Bone Diseases. 2019;22(4):27-33. (In Russ.). doi: https://doi.org/10.14341/osteo12350
9. Molitch ME, Clemmons DR, Malozowski S, et al. Evaluation and Treatment of Adult Growth Hormone Deficiency: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2011;96(6):1587-1609. doi: https://doi.org/10.1210/jc.2011-0179
10. van Iersel L, Li Z, Srivastava DK, et al. Hypothalamic-Pituitary Disorders in Childhood Cancer Survivors: Prevalence, Risk Factors and Long-Term Health Outcomes. J Clin Endocrinol Metab. 2019;104(12):6101-6115. doi: https://doi.org/10.1210/jc.2019-00834
11. Bobrova EI, Pavlova MG, Sotnikov VM, et al. Hypopituitarism after radiotherapy for childhood malignant tumors. Clinical and Experimental Thyroidology. 2013;9(3):15-20. (In Russ.). doi: https://doi.org/10.14341/ket20139315-20
12. Tselovalnikova TY, Pavlova MG, Zilov AV, et al. Growth hormone deficiency and metabolic disorders after radiotherapy and chemotherapy of malignant tumors of the posterior cranial fossa. Problems of Endocrinology. 2016;62(2):12-24. (In Russ.). doi: https://doi.org/10.14341/probl201662212-24
13. Brignardello E, Felicetti F, Castiglione A, et al. Endocrine health conditions in adult survivors of childhood cancer: the need for specialized adult-focused follow-up clinics. Eur J Endocrinol. 2013;168(3):465-472. doi: https://doi.org/10.1530/EJE-12-1043
14. Chemaitilly W, Li Z, Huang S, et al. Anterior Hypopituitarism in Adult Survivors of Childhood Cancers Treated With Cranial Radiotherapy: A Report From the St Jude Lifetime Cohort Study. J Clin Oncol. 2015;33(5):492-500. doi: https://doi.org/10.1200/JCO.2014.56.7933
15. Yang H, Yan K, Yuping X, et al. Bone microarchitecture and volumetric bone density impairment in young male adults with childhood-onset growth hormone deficiency. Eur J Endocrinol. 2019;180(2):145-153. doi: https://doi.org/10.1530/EJE-18-0711
16. Rodari G, Cattoni A, Albanese A. Final height in growth hormone-deficient childhood cancer survivors after growth hormone therapy. J Endocrinol Invest. 2020;43(2):209-217. doi: https://doi.org/10.1007/s40618-019-01102-w
17. Tselovalnikova TY, Yudina AE, Pavlova MG, et al. Growth disturbances and metabolic disorders in childhood cancer survivors. Problems of Endocrinology. 2016;62(5):62-63. (In Russ.). doi: https://doi.org/10.14341/probl201662562-63
18. D’Oronzo S, Stucci S, Tucci M, Silvestris F. Cancer treatment-induced bone loss (CTIBL): Pathogenesis and clinical implications. Cancer Treat Rev. 2015;41(9):798-808. doi: https://doi.org/10.1016/j.ctrv.2015.09.003
19. Sabir S, Akhtar MF, Saleem A. Endocrine disruption as an adverse effect of non-endocrine targeting pharmaceuticals. Environ Sci Pollut Res. 2019;26(2):1277-1286. doi: https://doi.org/10.1007/s11356-018-3774-4
20. Dixit M, Poudel SB, Yakar S. Effects of GH/IGF axis on bone and cartilage. Mol Cell Endocrinol. 2021;519(2):111052. doi: https://doi.org/10.1016/j.mce.2020.111052
21. Chemaitilly W, Cohen LE. Diagnosis of endocrine disease: Endocrine late-effects of childhood cancer and its treatments. Eur J Endocrinol. 2017;176(4):R183-R203. doi: https://doi.org/10.1530/EJE-17-0054
22. Ambroszkiewicz J, Gajewska J, Rogowska E, et al. Decreased bone mineral density and alteration in biochemical bone metabolism markers in children affected by bone tumors after completion of therapy. Neoplasma. 2015;62(02):288-294. doi: https://doi.org/10.4149/neo_2015_034
23. Petraroli M, D’Alessio E, Ausili E, et al. Bone mineral density in survivors of childhood brain tumours. Child’s Nerv Syst. 2006;23(1):59-65. doi: https://doi.org/10.1007/s00381-006-0175-7
24. Pietilä S, Sievänen H, Ala-Houhala M, et al. Bone mineral density is reduced in brain tumour patients treated in childhood. Acta Paediatr. 2006;95(10):1291-1297. doi: https://doi.org/10.1080/08035250600586484
25. Kang MJ, Lim JS. Bone mineral density deficits in childhood cancer survivors: Pathophysiology, prevalence, screening, and management. Korean J Pediatr. 2013;56(2):60. doi: https://doi.org/10.3345/kjp.2013.56.2.60
26. Wilson CL, Ness KK. Bone Mineral Density Deficits and Fractures in Survivors of Childhood Cancer. Curr Osteoporos Rep. 2013;11(4):329-337. doi: https://doi.org/10.1007/s11914-013-0165-0
27. Remes TM, Arikoski PM, Lähteenmäki PM, et al. Bone mineral density is compromised in very long-term survivors of irradiated childhood brain tumor. Acta Oncol (Madr). 2018;57(5):665-674. doi: https://doi.org/10.1080/0284186X.2018.1431401
28. Cohen LE, Gordon JH, Popovsky EY, et al. Bone density in post-pubertal adolescent survivors of childhood brain tumors. Pediatr Blood Cancer. 2012;58(6):959-963. doi: https://doi.org/10.1002/pbc.23300
29. Hartley H, Pizer B, Lane S, et al. Incidence and prognostic factors of ataxia in children with posterior fossa tumors. Neuro-Oncology Pract. 2019;6(3):185-193. doi: https://doi.org/10.1093/nop/npy033
30. Hart NH, Newton RU, Tan J, et al. Biological basis of bone strength: anatomy, physiology and measurement. J Musculoskelet Neuronal Interact. 2020;20(3):347-371.
31. Delyagin VM. Snizhenie kostnoy plotnosti v raznye vozrastnye periody (mnogogrannost’ problemy). Meditsinskiy sovet. 2012;(2):94-99 (In Russ.).
32. Shuhart CR, Yeap SS, Anderson PA, et al. Executive Summary of the 2019 ISCD Position Development Conference on Monitoring Treatment, DXA Cross-calibration and Least Significant Change, Spinal Cord Injury, Peri-prosthetic and Orthopedic Bone Health, Transgender Medicine, and Pediatrics. J Clin Densitom. 2019;22(4):453-471. doi: https://doi.org/10.1016/j.jocd.2019.07.001
33. Tsoriev TT, Belaya ZhE, Melnichenko GA. Trabecular bone score — a non-invasive analytical method to evaluate bone quality based on dual-energy absorptiometry. Perspectives of its use in clinical practice. Alʹm Klin Med. 2016;44(4):462-476. (In Russ.). doi: https://doi.org/10.18786/2072-0505-2016-44-4-462-476.
34. Golounina OO, Belaya ZE. Bisphosphonates: 50 years in clinical practice. Consilium Medicum. 2020;22(4):66-73. (In Russ.) doi: https://doi.org/10.26442/20751753.2020.4.200102
35. Belaya ZE, Rozhinskaya LY. Novye napravleniya v terapii osteoporoza — primenenie monoklonal’nykh chelovecheskikh antital k RANKL (Denosumab). Osteoporosis and Bone Diseases. 2011;14(2):23-26. (In Russ.). doi: https://doi.org/10.14341/osteo2011223-26
36. Belaya ZE, Rozhinskaya LY. Anabolicheskaya terapiya osteoporoza. Teriparatide: effektivnost’, bezopasnost’ i oblast’ primeneniya. Osteoporosis and Bone Diseases. 2013;16(2):32-40. (In Russ.). doi: https://doi.org/10.14341/osteo2013232-40
37. Kralick AE, Zemel BS. Evolutionary Perspectives on the Developing Skeleton and Implications for Lifelong Health. Front Endocrinol (Lausanne). 2020;11:99. doi: https://doi.org/10.3389/fendo.2020.00099
Supplementary files
|
1. Figure 1. Distribution of patients depending on the histological type of brain tumor. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(92KB)
|
Indexing metadata ▾ |
|
2. Figure 2. Prevalence of long-term effects of combined treatment of malignant brain tumors. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(150KB)
|
Indexing metadata ▾ |
|
3. Figure 3. Dependence of bone mineral density in the lumbar spine (LI – LIV) on age at the time of the disease (r = 0.781; p <0.01). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(138KB)
|
Indexing metadata ▾ |
|
4. Figure 4. Changes in bone mineral density at different age periods [37]. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(121KB)
|
Indexing metadata ▾ |
Review
For citations:
Golounina O.O., Pavlova M.G., Belaya Z.E., Kim E.I., Glinkina I.V., Morgunova T.B., Mazerkina N.A., Zheludkova O.G., Fadeev V.V. Endocrine late-effects and bone mineral density after combined treatment of malignant brain tumors in childhood and adolescence. Problems of Endocrinology. 2021;67(1):31-40. (In Russ.) https://doi.org/10.14341/probl12680

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).