Analysis of melatonin concentration and its correlation with ovarian disfunction among obese women of reproductive age
https://doi.org/10.14341/probl12710
Abstract
One of the new directions in the study of reproductive disorders in obese women is the effect and receptor sensitivity of melatonin on the gonadotropic function of the pituitary gland and ovariogenesis, taking into account the chronology of «light pollution». At the present stage, there is very little literature on the influence of the aspects of «light pollution» on the problem of obesity and reproductive disorders in the literature. This review is an attempt to combine the above problem in terms of the impact of «light pollution» and the level of receptor sensitivity of melatonin in women of reproductive age with obesity. The literature search was carried out in Russian (eLibrary, CyberLeninka.ru) and international (PubMed, Cochrane Library) databases in Russian and English. Free access to the full text of the articles was a priority. The selection of sources was prioritized for the period from 2015 to 2019. However, given the insufficient knowledge of the chosen topic, the choice of sources was dated from 1992. The work was carried out as part of the study «Central and peripheral pathophysiological mechanisms of development of adipose tissue diseases, taking into account clinical and hormonal characteristics» 2020–2022.
About the Authors
R. K. MikheevRobert K. Mikheev, resident student
Moscow
eLibrary SPIN: 9767-8468
E. N. Andreeva
Elena N. Andreeva, MD, PhD, DSc
Moscow
eLibrary SPIN: 1239-2937
E. V. Sheremetyeva
Ekaterina V. Sheremetyeva, MD, PhD
Moscow
eLibrary SPIN: 9413-5136
Yu. S. Absatarova
Yulia S. Absatarova, MD, PhD
11 Dm. Ulyanov str., Moscow, 117036, Moscow
eLibrary SPIN: 2220-9464
T. A. Ponomareva
Tatyana A. Ponomareva, MD
Moscow
eLibrary SPIN: 1739-4134
O. R. Grigoryan
Оlga R. Grigoryan, MD, PhD, DSc
Moscow
eLibrary SPIN: 3060-8242
References
1. Troshina EA, Pokusaeva VN, Andreeva EN. Female obesity. Moscow: MIA; 2017: 13-17. (in Russ.).
2. Anisimov VN. Melatonin, its physiological role and using in clinical medicine. St. Petersburg: Sistema; 2007; 17-21. (in Russ.).
3. Danilova MV, Usoltseva EN. Significance of the pineal gland hormone melatonin in maintaining the health of women of reproductive age (a review). Obstetrics, gynecology and reproduction. 2019;4:337-334. (in Russ.). doi: https://doi.org/10.17749/2313-7347.2019.13.4.337-344.
4. Luboshitzky R, Shen-Orr Z, Herer P, Nave R. Urinary 6-sulfatoxymelatonin excretion in hyperandrogenic women with polycystic ovary syndrome: The effect of ethinyl estradiol-cyproterone acetate treatment. Gynecol Endocrinol. 2003. doi: https://doi.org/10.1080/09513590312331290368
5. Shreeve N, Cagampang F, Sadek K, et al. Poor sleep in PCOS; is melatonin the culprit? Hum Reprod. 2013;28(5):1348-53. doi: https://doi.org/10.1093/humrep/det013
6. Jain P, Jain M, Haldar C, et al. Melatonin and its correlation with testosterone in polycystic ovarian syndrome. J Hum Reprod Sci. 2013;6(4):253-8. doi: https://doi.org/10.4103/0974-1208.126295
7. Fernandez RC, Moore VM, Van Ryswyk EM, et al. Sleep disturbances in women eith polycystic ovary syndrome: prevalence, pathophysiology, impact and management strategies. Nat Sci Sleep. 2018;10:45-64. doi: https://doi.org/10.2147/NSS.S127475
8. Xu XH, Kou LC, Wang HM, et al. Genetic polymorphisms of melatonin receptors 1A and 1B may result in disordered lipid metabolism in obese patients with polycystic ovary syndrome. Mol Med Rep. 2019;19(3):2220-2230. doi: https://doi.org/10.3892/mmr.2019.9872
9. Ramlau-Hansen CH, Thulstrup AM, Nohr EA, et al. Subfecundity in overweight and obese couples. Hum Reprod. 2007;22(6):1634-7. doi: https://doi.org/10.1093/humrep/dem035
10. Diamanti-Kandarakis E, Papalou O, Kandaraki EA, et al. Mechanisms in endocrinology: nutrition as a mediator of oxidative stress in metabolic and reproductive disorders in women. Eur J Endocrinol. 2017;176(2):R79-R99. doi: https://doi.org/10.1530/EJE-16-0616
11. Lim SS, Norman RJ, Davies MJ, et al. The effect of obesity on polycystic ovary syndrome: a systematic review and meta-analysis. Obes Rev. 2013;14(2):95-109. doi: https://doi.org/10.1111/j.1467-89X.2012.01053.x
12. Ezeh U, Yildiz BO, Azziz R. Referral bias in defining the phenotype and prevalence of obesity in polycystic ovary syndrome. J Clin Endocrinol Metab. 2013;98(6):E1088-96. doi: https://doi.org/10.1210/jc.2013-1295
13. Teede HJ, Joham AE, Paul E, et al. Longitudinal weight gain in women identified with polycystic ovary syndrome: results of an observational study in young women. Obesity (Silver Spring). 2013;21(8):1526-32. doi: https://doi.org/10.1002/oby.20213
14. Moran LJ, Noakes M, Clifton PM, et al. Ghrelin and measures of satiety are altered in polycystic ovary syndrome but not differentially affected by diet composition. J Clin Endocrinol Metab. 2004;89(7):3337-44. doi: https://doi.org/10.1210/jc.2003-031583
15. Hirschberg AL, Naessén S, Stridsberg M, et al. Impaired cholecystokinin secretion and disturbed appetite regulation in women with polycystic ovary syndrome. Gynecol Endocrinol. 2004; 19(2):79-87. doi: https://doi.org/10.1080/09513590400002300
16. Robinson S, Chan SP, Spacey S, et al. Postprandial thermogenesis is reduced in polycystic ovary syndrome and is associated with increased insulin resistance. Clin Endocrinol (Oxf). 1992; 36(6):537-43. doi: https://doi.org/10.1111/j.1365-2265.1992.tb02262.x
17. Moroshko I, Brennan L, O’Brien P. Predictors of dropout in weight loss interventions: a systematic review of the literature. Obes Rev. 2011; 12(11):912-34. doi: https://doi.org/10.1111/j.1467-789X.2011.00915.x
18. de Sousa AG, Cercato C, Mancini MC, et al. Obesity and obstructive sleep apnea-hypopnea syndrome. Obes Rev. 2008;9(4):340-54. doi: https://doi.org/10.1111/j.1467-789X.2008.00478.x
19. Peppard PE, Young T, Palta M, et al. Longitudinal study of moderate weight change and sleep-disordered breathing. JAMA. 2000;284(23):3015-21. doi: https://doi.org/10.1001/jama.284.23.3015
20. Kositanurit W, Muntham D, Udomsawaengsup S, et al. Prevalence and associated factors of obstructive sleep apnea in morbidly obese patients undergoing bariatric surgery. Sleep Breath. 2018;22(1):251-256. doi: https://doi.org/10.1007/s11325-017-1500-y
21. Bixler EO, Vgontzas AN, Lin HM, et al. Excessive daytime sleepiness in a general population sample: the role of sleep apnea, age, obesity, diabetes, and depression. J Clin Endocrinol Metab. 2005;90(8):4510-5. doi: https://doi.org/10.1210/jc.2005-0035
22. Vgontzas AN, Bixler EO, Tan TL, et al. Obesity without sleep apnea is associated with daytime sleepiness. Arch Intern Med. 1998; 158(12):1333-7. doi: https://doi.org/10.1001/archinte.158.12.1333
23. Vgontzas AN, Bixler EO, Chrousos GP, et al. Obesity and sleep disturbance; meaningful sub-tiping of obesity. Arch Physiol Biochem. 2008;112 (4):224-236. doi: https://doi.org/10.1080/13813450802521507
24. Vgontzas AN, Legro RS, Bixler EO, et al. Polycystic ovary syndrome is associated with obstructive sleep apnea and daytime sleepiness: role of insulin resistance. Nat Sci Sleep. 2018; 10:45-64. doi: https://doi.org/10.2147/NSS.S127475
25. Mokhlesi B, Scoccia B, Mazzone T, et al. Risk of obstructive sleep apnea in obese and nonobese women with polycystic ovary syndrome and healthy reproductively normal women. Fertil Steril. 2012;97(3):786-91. doi: https://doi.org/10.1016/j.fertnstert.2011.12.024
26. Gopal M, Duntley S, Uhles M, et al. The role of obesity in the increased prevalence of obstructive sleep apnea syndrome in patients with polycystic ovarian syndrome. Sleep Med. 2002;3(5):401-4. doi: https://doi.org/10.1016/s1389-9457(02)00033-3
27. Rao MN, Neylan TC, Grunfeld C, et al. Subchronic sleep restriction causes tissue-specific insulin resistance. J Clin Endocrinol Metab. 2015;100(4):1664-71. doi: https://doi.org/10.1210/jc.2014-3911
28. Ip MS, Lam B, Ng MM, et al. Obstructive sleep apnea is independently associated with insulin resistance. Am J Respir Crit Care Med. 2002; 165(5):670-6. doi: https://doi.org/10.1164/ajrccm.165.5.2103001
29. Harsch IA, Schahin SP, Brückner K, et al. The effect of continuous positive airway pressure treatment on insulin sensitivity in patients with obstructive sleep apnoea syndrome and type 2 diabetes. Respiration. 2004;71(3):252-9. doi: https://doi.org/10.1159/000077423
30. Barceló A, Barbé F, de la Peña M, et al. Insulin resistance and daytime sleepiness in patients with sleep apnoea. Thorax. 2008;63(11):946-50. doi: https://doi.org/10.1136/thx.2007.093740
31. Balkau B, Vol S, Loko S, et al. High baseline insulin levels associated with 6-year incident observed sleep apnea. Diabetes Care. 2010;33(5):1044-9. doi: https://doi.org/10.2337/dc09-1901
32. Greco C, Spallone V. Obstructive Sleep Apnoea Syndrome and Diabetes. Fortuitous Association or Interaction? Curr Diabetes Rev. 2015;12(2):129-55. doi: https://doi.org/10.2174/1573399811666150319112611
33. El-Sharkawy AA, Abdelmotaleb GS, Aly MK, et al. Effect of metformin on sleep disorders in adolescent girls with polycystic ovarian syndrome. J Pediatr Adolesc Gynecol. 2014;27(6):347-52. doi: https://doi.org/10.1016/j.jpag.2014.01.004
34. Liu A, Kim SH, Ariel D, et al. Does enhanced insulin sensitivity improve sleep measures in patients with obstructive sleep apnea: a randomized, placebo-controlled pilot study. Sleep Med. 2016;22:57-60. doi: https://doi.org/10.1016/j.sleep.2016.06.005
Supplementary files
Review
For citations:
Mikheev R.K., Andreeva E.N., Sheremetyeva E.V., Absatarova Yu.S., Ponomareva T.A., Grigoryan O.R. Analysis of melatonin concentration and its correlation with ovarian disfunction among obese women of reproductive age. Problems of Endocrinology. 2021;67(1):69-75. (In Russ.) https://doi.org/10.14341/probl12710

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).