Preview

Problems of Endocrinology

Advanced search

Clinical and molecular genetic features of 3 family cases of the central precocious puberty, due to MKRN3 gene defects

https://doi.org/10.14341/probl12745

Abstract

Gonadotropin-dependent precocious puberty (central) is a condition resulting from the early (up to 8 years in girls and 9 years in boys) reactivation of the hypothalamic-pituitary-gonadal axis. An increase in the secretion of sex steroids by the gonads in this form is a consequence of the stimulation of the sex glands by gonadotropic hormones of the pituitary gland. In the absence of central nervous system abnormalities, CPP is classified as idiopathic and as familial in some cases, emphasizing the genetic origin of this disorder. Loss-of-function mutations in Makorin Ring Finger Protein 3 (MKRN3) are the most common identified genetic cause of central precocious puberty compared to sporadic cases. In the present study we performed the first descrition of 3 family cases of central precocious puberty duo to novel MKRN3 gene mutation detected by NGS in the Russian Federation.

About the Authors

N. A. Zubkova
Endocrinology Research Centre
Russian Federation

Natalia A. Zubkova - MD, PhD.

11 Dm. Ulyanova street, 117036 Moscow.

eLibrary SPIN: 5064-9992


Competing Interests:

No



A. A. Kolodkina
Endocrinology Research Centre
Russian Federation

Anna A. Kolodkina - MD, PhD.

11 Dm. Ulyanova street, 117036 Moscow.

eLibrary SPIN: 6705-6630


Competing Interests:

No



N. A. Makretskaya
Endocrinology Research Centre
Russian Federation

Nina A. Makretskaya - MD, PhD.

11 Dm. Ulyanova street, 117036 Moscow.

eLibrary SPIN: 4467-7880


Competing Interests:

No



P. L. Okorokov
Endocrinology Research Centre
Russian Federation

Pavel L. Okorokov – MD.

11 Dm. Ulyanova street, 117036 Moscow.

eLibrary SPIN: 6989-2620


Competing Interests:

No



T. V. Pogoda
Endocrinology Research Centre
Russian Federation

Tatyana V. Pogoda – PhD.

11 Dm. Ulyanova street, 117036 Moscow.

eLibrary SPIN: 1013-9782


Competing Interests:

No



E. V. Vasiliev
Endocrinology Research Centre
Russian Federation

Evgeny V. Vasilyev - PhD, senior research associate.

11 Dm. Ulyanova street, 117036 Moscow.

eLibrary SPIN-код: 5767-1569


Competing Interests:

No



V. M. Petrov
Endocrinology Research Centre
Russian Federation

Vasily M. Petrov - PhD, senior research associate.

11 Dm. Ulyanova street, 117036 Moscow.

eLibrary SPIN-код: 4358-2147


Competing Interests:

No



A. N. Tiulpakov
Endocrinology Research Centre; Research Centre for Medical Genetics
Russian Federation

Anatoliy N. Tyulpakov - MD, PhD.

11 Dm. Ulyanova street, 117036 Moscow.

eLibrary SPIN: 8396-1798


Competing Interests:

No



References

1. Gajdos ZKZ, Hirschhorn JN, Palmert MR. What controls the timing of puberty? An update on progress from genetic investigation. Curr Opin Endocrinol Diabetes Obes. 2009;16(1):16-24. doi: https://doi.org/10.1097/MED.0b013e328320253c

2. Palmert MR, Boepple PA. Variation in the timing of puberty: clinical spectrum and genetic investigation. J Clin Endocrinol Metab. 2001;86(6):2364-2368. doi: https://doi.org/10.1210/jcem.86.6.7603.

3. Teilmann G. Prevalence and Incidence of Precocious Pubertal Development in Denmark: An Epidemiologic Study Based on National Registries. Pediatrics. 2005;116(6):1323-1328. doi: https://doi.org/10.1542/peds.2005-0012

4. Soriano-Guillén L, Corripio R, Labarta JI, et al. Central Precocious Puberty in Children Living in Spain: Incidence, Prevalence, and Influence of Adoption and Immigration. J Clin Endocrinol Metab. 2010;95(9):4305-4313. doi: https://doi.org/10.1210/jc.2010-1025

5. Palmert MR, Hirschhorn JN. Genetic approaches to stature, pubertal timing, and other complex traits. Mol Genet Metab. 2003;80(1-2):1-10. doi: https://doi.org/10.1016/s1096-7192(03)00107-0

6. Parent AS, Teilmann G, Juul A, et al. The timing of normal puberty and the age limits of sexual precocity: variations around the world, secular trends, and changes after migration. Endocr Rev. 2003;24(5):668-693. doi: https://doi.org/10.1210/er.2002-0019

7. Aiello F, Cirillo G, Cassio A, et al. Molecular screening of PROKR2 gene in girls with idiopathic central precocious puberty. Ital J Pediatr. 2021;47(1):5. doi: https://doi.org/10.1186/s13052-020-00951-z

8. Valadares LP, Meireles CG, De Toledo IP, et al. MKRN3 Mutations in Central Precocious Puberty: A Systematic Review and Meta-Analysis. J Endocr Soc. 2019;3(5):979-995. doi: https://doi.org/10.1210/js.2019-00041

9. Simon D, Ba I, Mekhail N, et al. Mutations in the maternally imprinted gene MKRN3 are common in familial central precocious puberty. Eur J Endocrinol. 2016;174(1):1-8. doi: https://doi.org/10.1530/EJE-15-0488

10. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164. doi: https://doi.org/10.1093/nar/gkq603

11. Richards S, Aziz N, Bale S, et al. ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-424. doi: https://doi.org/10.1038/gim.2015.30

12. Ryzhkova OP, Kardymon OL, Prohorchuk EB, et al. Rukovodstvo po interpretatsii dannykh posledovatel’nosti DNK cheloveka, poluchennykh metodami massovogo parallel’nogo sekvenirovaniya (MPS) (redaktsiya 2018, versiya 2). Medical Genetics. 2019;18(2):3-23. (In Russ.). doi: https://doi.org/10.25557/2073-7998.2019.02.3-23

13. Abreu AP, Dauber A, Macedo DB, et al. Central precocious puberty caused by mutations in the imprinted gene MKRN3. N Engl J Med. 2013;368(26):2467-2475. doi: https://doi.org/10.1056/NEJMoa1302160

14. Jong MT, Gray TA, Ji Y, et al. A novel imprinted gene, encoding a RING zinc-finger protein, and overlapping antisense transcript in the Prader-Willi syndrome critical region. Hum Mol Genet. 1999;8(5):783-793. doi: https://doi.org/10.1093/hmg/8.5.783

15. Abreu AP, Macedo DB, Brito VN, et al. A new pathway in the control of the initiation of puberty: the MKRN3 gene. J Mol Endocrinol. 2015;54(3):R131-139. doi: https://doi.org/10.1530/JME-14-0315

16. Liu H, Kong X, Chen F. Mkrn3 functions as a novel ubiquitin E3 ligase to inhibit Nptx1 during puberty initiation. Oncotarget. 2017;8(49):85102-85109. doi: https://doi.org/10.18632/oncotarget.19347

17. Macedo DB, França MM, Montenegro LR, et al. Central Precocious Puberty Caused by a Heterozygous Deletion in the MKRN3 Promoter Region. Neuroendocrinology. 2018;107(2):127-132. doi: https://doi.org/10.1159/000490059

18. Lu W, Wang J, Li C, et al. A novel mutation in 5’-UTR of Makorin ring finger 3 gene associated with the familial precocious puberty. Acta Biochim Biophys Sin (Shanghai). 2018;50(12):1291-1293. doi: https://doi.org/10.1093/abbs/gmy124

19. Aycan Z, Savaş-Erdeve Ş, Çetinkaya S, et al. Investigation of MKRN3 Mutation in Patients with Familial Central Precocious Puberty. J Clin Res Pediatr Endocrinol. 2018;10(3):223-229. doi: https://doi.org/10.4274/jcrpe.5506

20. Ramos CO, Macedo DB, Canton APM, et al. Outcomes of Patients with Central Precocious Puberty Due to Loss-of-Function Mutations in the MKRN3 Gene after Treatment with Gonadotropin-Releasing Hormone Analog. Neuroendocrinology. 2020;110(7-8):705-713. doi: https://doi.org/10.1159/000504446


Supplementary files

1. Figure 1. Pedigree of the family 1.
Subject
Type Исследовательские инструменты
View (85KB)    
Indexing metadata ▾
2. Figure 2. Family pedigree 2.
Subject
Type Исследовательские инструменты
View (95KB)    
Indexing metadata ▾
3. Figure 3. Family pedigree 3.
Subject
Type Исследовательские инструменты
View (68KB)    
Indexing metadata ▾
4. Figure 4. Electropherogram of a fragment of the sequence of exon 1 of the MKRN3 gene in members of family 1: heterozygous transversion c.118G> T with replacement of the glutamic acid (GAA) codon with a stop codon (TAA) at position 40 (p.E40X).
Subject
Type Исследовательские инструменты
View (127KB)    
Indexing metadata ▾
5. Figure 5. Electropherogram of a fragment of the sequence of exon 1 of the MKRN3 gene in family members 2: heterozygous transversion c.343T> A with the replacement of cysteine (TGT) codon for serine (AGT) at position 115 (p.C115S).
Subject
Type Исследовательские инструменты
View (131KB)    
Indexing metadata ▾
6. Figure 6. Electropherogram (reverse sequence) of a fragment of exon 1 of the MKRN3 gene in proband 3.1: heterozygous transversion c.1091G> C with the replacement of cysteine codon (TGC) for serine (TCC) at position 364 (p.C364S).
Subject
Type Исследовательские инструменты
View (127KB)    
Indexing metadata ▾

Review

For citations:


Zubkova N.A., Kolodkina A.A., Makretskaya N.A., Okorokov P.L., Pogoda T.V., Vasiliev E.V., Petrov V.M., Tiulpakov A.N. Clinical and molecular genetic features of 3 family cases of the central precocious puberty, due to MKRN3 gene defects. Problems of Endocrinology. 2021;67(3):55-61. (In Russ.) https://doi.org/10.14341/probl12745

Views: 1716


ISSN 0375-9660 (Print)
ISSN 2308-1430 (Online)