Clinical and molecular genetic features of 3 family cases of the central precocious puberty, due to MKRN3 gene defects
https://doi.org/10.14341/probl12745
Abstract
Gonadotropin-dependent precocious puberty (central) is a condition resulting from the early (up to 8 years in girls and 9 years in boys) reactivation of the hypothalamic-pituitary-gonadal axis. An increase in the secretion of sex steroids by the gonads in this form is a consequence of the stimulation of the sex glands by gonadotropic hormones of the pituitary gland. In the absence of central nervous system abnormalities, CPP is classified as idiopathic and as familial in some cases, emphasizing the genetic origin of this disorder. Loss-of-function mutations in Makorin Ring Finger Protein 3 (MKRN3) are the most common identified genetic cause of central precocious puberty compared to sporadic cases. In the present study we performed the first descrition of 3 family cases of central precocious puberty duo to novel MKRN3 gene mutation detected by NGS in the Russian Federation.
About the Authors
N. A. ZubkovaRussian Federation
Natalia A. Zubkova - MD, PhD.
11 Dm. Ulyanova street, 117036 Moscow.
eLibrary SPIN: 5064-9992
Competing Interests:
No
A. A. Kolodkina
Russian Federation
Anna A. Kolodkina - MD, PhD.
11 Dm. Ulyanova street, 117036 Moscow.
eLibrary SPIN: 6705-6630
Competing Interests:
No
N. A. Makretskaya
Russian Federation
Nina A. Makretskaya - MD, PhD.
11 Dm. Ulyanova street, 117036 Moscow.
eLibrary SPIN: 4467-7880
Competing Interests:
No
P. L. Okorokov
Russian Federation
Pavel L. Okorokov – MD.
11 Dm. Ulyanova street, 117036 Moscow.
eLibrary SPIN: 6989-2620
Competing Interests:
No
T. V. Pogoda
Russian Federation
Tatyana V. Pogoda – PhD.
11 Dm. Ulyanova street, 117036 Moscow.
eLibrary SPIN: 1013-9782
Competing Interests:
No
E. V. Vasiliev
Russian Federation
Evgeny V. Vasilyev - PhD, senior research associate.
11 Dm. Ulyanova street, 117036 Moscow.
eLibrary SPIN-код: 5767-1569
Competing Interests:
No
V. M. Petrov
Russian Federation
Vasily M. Petrov - PhD, senior research associate.
11 Dm. Ulyanova street, 117036 Moscow.
eLibrary SPIN-код: 4358-2147
Competing Interests:
No
A. N. Tiulpakov
Russian Federation
Anatoliy N. Tyulpakov - MD, PhD.
11 Dm. Ulyanova street, 117036 Moscow.
eLibrary SPIN: 8396-1798
Competing Interests:
No
References
1. Gajdos ZKZ, Hirschhorn JN, Palmert MR. What controls the timing of puberty? An update on progress from genetic investigation. Curr Opin Endocrinol Diabetes Obes. 2009;16(1):16-24. doi: https://doi.org/10.1097/MED.0b013e328320253c
2. Palmert MR, Boepple PA. Variation in the timing of puberty: clinical spectrum and genetic investigation. J Clin Endocrinol Metab. 2001;86(6):2364-2368. doi: https://doi.org/10.1210/jcem.86.6.7603.
3. Teilmann G. Prevalence and Incidence of Precocious Pubertal Development in Denmark: An Epidemiologic Study Based on National Registries. Pediatrics. 2005;116(6):1323-1328. doi: https://doi.org/10.1542/peds.2005-0012
4. Soriano-Guillén L, Corripio R, Labarta JI, et al. Central Precocious Puberty in Children Living in Spain: Incidence, Prevalence, and Influence of Adoption and Immigration. J Clin Endocrinol Metab. 2010;95(9):4305-4313. doi: https://doi.org/10.1210/jc.2010-1025
5. Palmert MR, Hirschhorn JN. Genetic approaches to stature, pubertal timing, and other complex traits. Mol Genet Metab. 2003;80(1-2):1-10. doi: https://doi.org/10.1016/s1096-7192(03)00107-0
6. Parent AS, Teilmann G, Juul A, et al. The timing of normal puberty and the age limits of sexual precocity: variations around the world, secular trends, and changes after migration. Endocr Rev. 2003;24(5):668-693. doi: https://doi.org/10.1210/er.2002-0019
7. Aiello F, Cirillo G, Cassio A, et al. Molecular screening of PROKR2 gene in girls with idiopathic central precocious puberty. Ital J Pediatr. 2021;47(1):5. doi: https://doi.org/10.1186/s13052-020-00951-z
8. Valadares LP, Meireles CG, De Toledo IP, et al. MKRN3 Mutations in Central Precocious Puberty: A Systematic Review and Meta-Analysis. J Endocr Soc. 2019;3(5):979-995. doi: https://doi.org/10.1210/js.2019-00041
9. Simon D, Ba I, Mekhail N, et al. Mutations in the maternally imprinted gene MKRN3 are common in familial central precocious puberty. Eur J Endocrinol. 2016;174(1):1-8. doi: https://doi.org/10.1530/EJE-15-0488
10. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164. doi: https://doi.org/10.1093/nar/gkq603
11. Richards S, Aziz N, Bale S, et al. ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-424. doi: https://doi.org/10.1038/gim.2015.30
12. Ryzhkova OP, Kardymon OL, Prohorchuk EB, et al. Rukovodstvo po interpretatsii dannykh posledovatel’nosti DNK cheloveka, poluchennykh metodami massovogo parallel’nogo sekvenirovaniya (MPS) (redaktsiya 2018, versiya 2). Medical Genetics. 2019;18(2):3-23. (In Russ.). doi: https://doi.org/10.25557/2073-7998.2019.02.3-23
13. Abreu AP, Dauber A, Macedo DB, et al. Central precocious puberty caused by mutations in the imprinted gene MKRN3. N Engl J Med. 2013;368(26):2467-2475. doi: https://doi.org/10.1056/NEJMoa1302160
14. Jong MT, Gray TA, Ji Y, et al. A novel imprinted gene, encoding a RING zinc-finger protein, and overlapping antisense transcript in the Prader-Willi syndrome critical region. Hum Mol Genet. 1999;8(5):783-793. doi: https://doi.org/10.1093/hmg/8.5.783
15. Abreu AP, Macedo DB, Brito VN, et al. A new pathway in the control of the initiation of puberty: the MKRN3 gene. J Mol Endocrinol. 2015;54(3):R131-139. doi: https://doi.org/10.1530/JME-14-0315
16. Liu H, Kong X, Chen F. Mkrn3 functions as a novel ubiquitin E3 ligase to inhibit Nptx1 during puberty initiation. Oncotarget. 2017;8(49):85102-85109. doi: https://doi.org/10.18632/oncotarget.19347
17. Macedo DB, França MM, Montenegro LR, et al. Central Precocious Puberty Caused by a Heterozygous Deletion in the MKRN3 Promoter Region. Neuroendocrinology. 2018;107(2):127-132. doi: https://doi.org/10.1159/000490059
18. Lu W, Wang J, Li C, et al. A novel mutation in 5’-UTR of Makorin ring finger 3 gene associated with the familial precocious puberty. Acta Biochim Biophys Sin (Shanghai). 2018;50(12):1291-1293. doi: https://doi.org/10.1093/abbs/gmy124
19. Aycan Z, Savaş-Erdeve Ş, Çetinkaya S, et al. Investigation of MKRN3 Mutation in Patients with Familial Central Precocious Puberty. J Clin Res Pediatr Endocrinol. 2018;10(3):223-229. doi: https://doi.org/10.4274/jcrpe.5506
20. Ramos CO, Macedo DB, Canton APM, et al. Outcomes of Patients with Central Precocious Puberty Due to Loss-of-Function Mutations in the MKRN3 Gene after Treatment with Gonadotropin-Releasing Hormone Analog. Neuroendocrinology. 2020;110(7-8):705-713. doi: https://doi.org/10.1159/000504446
Supplementary files
|
1. Figure 1. Pedigree of the family 1. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(85KB)
|
Indexing metadata ▾ |
|
2. Figure 2. Family pedigree 2. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(95KB)
|
Indexing metadata ▾ |
|
3. Figure 3. Family pedigree 3. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(68KB)
|
Indexing metadata ▾ |
|
4. Figure 4. Electropherogram of a fragment of the sequence of exon 1 of the MKRN3 gene in members of family 1: heterozygous transversion c.118G> T with replacement of the glutamic acid (GAA) codon with a stop codon (TAA) at position 40 (p.E40X). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(127KB)
|
Indexing metadata ▾ |
|
5. Figure 5. Electropherogram of a fragment of the sequence of exon 1 of the MKRN3 gene in family members 2: heterozygous transversion c.343T> A with the replacement of cysteine (TGT) codon for serine (AGT) at position 115 (p.C115S). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(131KB)
|
Indexing metadata ▾ |
|
6. Figure 6. Electropherogram (reverse sequence) of a fragment of exon 1 of the MKRN3 gene in proband 3.1: heterozygous transversion c.1091G> C with the replacement of cysteine codon (TGC) for serine (TCC) at position 364 (p.C364S). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(127KB)
|
Indexing metadata ▾ |
Review
For citations:
Zubkova N.A., Kolodkina A.A., Makretskaya N.A., Okorokov P.L., Pogoda T.V., Vasiliev E.V., Petrov V.M., Tiulpakov A.N. Clinical and molecular genetic features of 3 family cases of the central precocious puberty, due to MKRN3 gene defects. Problems of Endocrinology. 2021;67(3):55-61. (In Russ.) https://doi.org/10.14341/probl12745

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).