Preview

Проблемы Эндокринологии

Расширенный поиск

Адипонектин: плейотропный гормон с множеством функций

https://doi.org/10.14341/probl12827

Полный текст:

Аннотация

Жировая ткань, состоящая из различных видов жира, является в организме одним из самых больших эндокринных органов, играющим множество ролей, которые включают, но не ограничиваются сохранением энергетических запасов, метаболическим гомеостазом, продукцией тепла, участием в иммунных функциях и секрецией целого ряда биологически активных факторов, называемых адипокинами. Самым обильно секретируемым из адипокинов является адипонектин. Этот вырабатываемый адипоцитами гормон оказывает плейотропное действие и обладает способностью повышать чувствительность к инсулину, а также демонстрирует антидиабетические свойства и эффекты противодействия развитию ожирения, воспаления, атеросклероза и, кроме того, еще и проявляет кардио- и нейропротективные свойства. С другой стороны, помимо вышеперечисленных защитных свойств и возможности предотвращения развития различных патологических процессов в разных типах клеток, адипонектин может быть связан с развитием ряда системных заболеваний и злокачественных опухолей. Снижение уровней адипонектина, как оказалось, наблюдается в том числе при дыхательной недостаточности, связанной с коронавирусной инфекцией COVID-19, что обусловлено в основном развитием феномена, называемого «адипонектиновый парадокс». Многочисленные доказательства многоликости функций адипонектина в организме были получены в ходе исследований на животных моделях, больше всего на грызунах. Наш краткий обзор полностью посвящен многофункциональной роли адипонектина и механизмам его действия при различных физиологических и патологических состояниях.

Об авторах

С. С. Шкляев
Национальный медицинский исследовательский центр эндокринологии; Национальный медицинский исследовательский центр радиологии им. А.Ф. Цыба
Россия

Шкляев Станислав Сергеевич, кандидат медицинских наук

117036, Москва, ул. Дм. Ульянова, д. 11

eLibrary SPIN: 2975-4121

 


Конфликт интересов:

конфликта интересов авторов нет



Г. А. Мельниченко
Национальный медицинский исследовательский центр эндокринологии
Россия

Мельниченко Галина Афанасьевна, доктор медицинских наук, профессор, академик Российской академии наук

Москва

eLibrary SPIN: 8615-0038



Н. Н. Волеводз
Национальный медицинский исследовательский центр эндокринологии

Волеводз Наталья Никитична, доктор медицинских наук, профессор

Москва

eLibrary SPIN: 1127-0933



Н. А. Фалалеева
Национальный медицинский исследовательский центр радиологии им. А.Ф. Цыба

Фалалеева Наталья Александровна, доктор медицинских наук

Обнинск

eLibrary SPIN: 1431-5452



С. А. Иванов
Национальный медицинский исследовательский центр радиологии им. А.Ф. Цыба

Иванов Сергей Анатольевич, доктор медицинских наук, профессор

Обнинск

eLibrary SPIN: 4264-5167



А. Д. Каприн
Национальный медицинский исследовательский центр радиологии им. А.Ф. Цыба

Каприн Андрей Дмитриевич, доктор медицинских наук, профессор, академик Российской академии наук

Обнинск

eLibrary SPIN: 1759-8101

 



Н. Г. Мокрышева
Национальный медицинский исследовательский центр эндокринологии

Мокрышева Наталья Георгиевна, доктор медицинских наук, профессор, член-корреспондент Российской академии наук

Москва

eLibrary SPIN: 5624-3875



Список литературы

1. WHO Obesity and overweight. Geneva: World Health Organization, 2020. Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight

2. Swinburn BA, Sacks G, Hall KD, et al. The global obesity pandemic: shaped by global drivers and local environments. Lancet. 2011;378(9793):804-814. doi: https://doi.org/10.1016/S0140-6736(11)60813-1

3. WHO. Global strategy on diet, physical activity and health. Geneva: World Health Organization, 2004. Available from: http://www.who.int/

4. Cohen P, Spiegelman BM. Cell biology of fat storage. Mol Biol Cell. 2016;27(16):2523-2527. doi: https://doi.org/10.1091/mbc.E15-10-0749

5. Shuldiner AR, Yang R, Gong DW. Resistin, obesity and insulin resistance — the emerging role of the adipocyte as an endocrine organ. N Engl J Med. 2001;345:1345-1346. doi: https://doi.org/10.1056/NEJM200111013451814

6. Song T, Kuang S. Adipocyte differentiation in health and diseases. Clin Sci (Lond). 2019; 133(20): 2107-2119. doi: https://doi.org/10.1042/CS2019012

7. Sebo ZL, Rodeheffer MS. Assembling the adipose organ: adipocyte lineage segregation and adipogenesis in vivo. Development. 2019;146(7):dev172098. doi: https://doi.org/10.1242/dev.172098

8. Park A, Kim WK, Bae K-H. Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells. World J Stem Cells. 2014;6(1):33-42. doi: https://doi.org/10.4252/wjsc.v6.i1.33

9. Gesta S, Tseng Y-H, Kahn CR. Developmental origin of fat: tracking obesity to its source. Cell. 2007;131(2):242-256. doi: https://doi.org/10.1016/j.cell.2007.10.004

10. Rosen ED, Spiegelman BM. What we talk about when we talk about fat. Cell. 2014;156(1-2):20-44. doi: https://doi.org/10.1016/j.cell.2013.12.012

11. Scherer PE. Adipose tissue: from lipid storage compartment to endocrine organ. Diabetes. 2006;55(6):1537-1555. doi: https://doi.org/10.2337/db06-0263

12. Parlee SD, Lentz SI, Mori H, MacDougald OA. Quantifying size and number of adipocytes in adipose tissue. Methods Enzymol. 2014;537:93-122. doi: https://doi.org/10.1016/B978-0-12-411619-1.00006-9

13. Timmos JA, Wennmalm K, Larson O, et al. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Procl Natl Acad Sci USA. 2007;104:4401-4406. doi: https://doi.org/10.1073/pnas.0610615104

14. Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med. 2013;19(10):1252-1263. doi: https://doi.org/10.1038/nm.3361

15. Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 2007;293(2):444-452. doi: https://doi.org/10.1152/ajendo.00691.2006

16. Virtanen KA, Lidell ME, Orava J, et al. Functional brown adipose tissue in healthy adults. N Engl J Med. 2009;360(15):1518-1525. doi: https://doi.org/10.1056/NEJMoa0808949

17. Shen W, Wang ZM, Punyanita M, et al. Adipose tissue quantification by imaging methods: a proposed classification. Obes Res. 2003;11(1):5-16. doi: https://doi.org/10.1038/oby.2003.3

18. Cypess AM, Lehman S, Williams G, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360(15):1509-1517. doi: https://doi.org/10.1056/NEJMoa0810780

19. Rothwell NJ, Stock MJ. Luxuskonsumption, diet-induced thermogenesis and brown fat: the case in favour. Clin Sci (Lond). 1983;64(1):19-23. doi: https://doi.org/10.1042/cs0640019

20. Krylowicz A, Puzanowska-Kuznicka M. Induction of adipose tissue browning as a strategy to combat obestity. Int J Mol Sci. 2020;21(17):6241. doi: https://doi.org/10.3390/ijms21176241

21. Sancez-Gurmaches J, Guertin GA. Adipocyte lineages: tracking back the origin of fat. Biochim Biophys Acta. 2014;1842(3):340-351. doi: https://doi.org/10.1016/j.bbadis.2013.05.027

22. Cinti S. The adipose organ at a glance. Dis Model Mech. 2012;5(5):588-594. doi: https://doi.org/10.1242/dmm.009662

23. Frontini A, Cinti S. Distribution and Development of brown adipocytes in the murine and human adipose organ. Cell Metab. 2010;11(4):253-256. doi: https://doi.org/10.1016/j.cmet.2010.03.004

24. Petrovic N, Walden TB, Shabalina IG, et al. Chronic peroxisome proliferator-activated receptor gamma (PPAR gamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem. 2010;285(10):7153-7164. doi: https://doi.org/10.1074/jbc.M109.053942

25. Ishibashi J, Seale P. Medicine. Beige can be slimming. Science. 2010;328(5982):1113-1114. doi: https://doi.org/10.1126/science.1190816

26. Schulz TJ, Huang TL, Tran TT, et al. Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. Proc Natl Acad Sci USA. 2011;1081:143-148. doi: https://doi.org/10.1073/pnas.1010929108

27. Cannon B, Nedergaard J. Cell Biology: Neither brown nor white. Nature. 2012;488(7411):286-287. doi: https://doi.org/101038/488286a

28. Cinti S. Between brown and white: Novel aspects of adipocyte differentiation. Ann Med. 2011;43(2):104-115. doi: https://doi.org/10.3109/07853890.2010.535557

29. Cinti S. Transdifferentiation properties of adipocytes in the adipose organ. Am J Phys Endocrinol Metab. 2009;297(5):977-986. doi: https://doi.org/10.1152/ajpendo.00183.2009

30. Wang W, Kissig M, Rajakumar S, et al. Ebf2 is a selective marker of borwn and beige adipogenic precursor cells. Proc Natl Acad Sci USA. 2014;111(40):14466-14471. doi: https://doi.org/10.1073/pnas.1412685111

31. Rosenwald M, Perdikari A, Rülicke T, et al. Bi-directional interconversion of brite and white adipocytes. Nat Cell Biol. 2013;15(6):659-667. doi: https://doi.org/10.1038/ncb2740

32. Kajimura S, Spiegelman BM, Seale P. Brown and beige fat: physiological roles beyond heat generation. Cell Metab. 2015;22(4):546-559. doi: https://doi.org/10.1016/j.cmet.2015.09.007

33. Roh HC, Tsai LTY, Shao M, et al. Warming induces significant reprogramming of beige, but not brown, adipocyte cellular identity. Cell Metab. 2018;27(5):1121-1137. doi: https://doi.org/10.1016/j.cmet.2018.03.005

34. We J, Bostrom P, Sparks LM, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150(2):366-376. doi: https://doi.org/10.1016/j.cell.2012.05.016

35. Whitehead A, Krause FN, Moran A, et al. Brown and beige adipose tissue regulate systemic metabolism through a metabolite interorgan signaling axis. Nat Commun. 2021;12(1):1905. doi: https://doi.org/10.1038/s41467-021-22272-3

36. Cheng L, Wang J, Dai H, et al. Brown and beige adipose tissue: a novel therapeutic strategy for obesity and type 2 diabetes mellitus. Adipocyte. 2021;10(1):48-65. doi: https://doi.org/10.1080/21623945.2020.1870060

37. Wu J, Bostrom P, Sparks LM, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150(2):366-376. doi: https://doi.org/10.1016/j.cell.2012.05.016

38. Schulz TJ, Huang P, Huang TL, et al. Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat. Nature. 2013;495(7441):379-383. doi: https://doi.org/10.1038/nature11943

39. Villaroya F, Cereiho R, Gavalda-Navarro A, et al. Inflammation of borwn/beige adipose tissues in obesity and metabolic disease. J Intern Med. 2018;284(5):492-504. doi: https://doi.org/10.1111/joim.12803

40. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab. 2004;89(6):2548-2556. doi: https://doi.org/10.1210/jc.2004-0395

41. Taylor EB. The complex role of adipokines in obesity, inflammation and autoimmunity. Clin Sci (Lond). 2021;135(6):731-752. doi: https://doi.org/10.1042/CS20200895

42. Leal VdO, Mafra D. Adipokines in obesity. Clin Chim Acta. 2013;419:87-94. doi: https://doi.org/10.1016/j.cca.2013.02.003

43. Khan M, Joseph F. Adipose Tissue and Adipokines: The association with and application of adipokines in obesity. Scientifica (Cairo). 2014;2014:1-7. doi: https://doi.org/10.1155/2014/328592

44. Recinella L, Orlando G, Ferrante C, et al. Adipokines: new potential therapeutic target for obesity and metabolic, rheumatic, and cardiovascular diseases. Front Physiol. 2020;11. doi: https://doi.org/10.3389/fphys.2020.578966

45. Bartelt A, Bruns OT, Reimer R, et al. Brown adipose tissue activity controls triglyceride clearance. Nat Med. 2011;17(2):200-205. doi: https://doi.org/10.1038/nm.2297

46. Giralt M, Villaroya F. Mitochondrial uncoupling and the regulation of glucose homeostasis. Curr Diabetis Rev. 2017;13(4):386-394. doi: https://doi.org/10.2174/1573399812666160217122707

47. Lou Y, Lin H. Inflammation initiates a vicious circle between obesity and non-alcoholic fatty liver disease. Immun Inflam Dis. 2021;9(1):59-73. doi: https://doi.org/10.1002/iid3.391

48. Frommer KW, Neumann E, Müller-Ladner U. Adipocytokines and autoimmunity. Arthritis Res Ther. 2011;13(S2):O8. doi: https://doi.org/10.1186/ar3412

49. Galler A, Gelbrich G, Kratzsch J, et al. Elevated serum levels of adiponectin in children, adolescents and young adults with type 1 diabetes and the impact of age, gender, body mass index and metabolic control: a longitudinal study. Eur J Endocrinol. 2007;157(4):481-489. doi: https://doi.org/10.1530/EJE-07-0250

50. Harle P, Pongratz G, Weidler C, et al. Possible role of leptin in hypoandrogenicity in patients with systemic lupus erythematosus and rheumatoid arthritis. Ann Rheum Dis. 2004;63(7):809-816. doi: https://doi.org/10.1136/ard.2003.011619

51. Chougule D, Nadkar M, Venkataraman K, et al. Adipokine interactions promote the pathogenesis of systemic lupus erythematosus. Cytokine. 2018;111:20-27. doi: https://doi.org/10.1016/j.cyto.2018.08.002

52. Schäffler A, Ehling A, Neumann E, et al. Adipocytokines in synovial fluid. JAMA. 2003;290(13):1709-1710. doi: https://doi.org/10.1001/jama.290.13.1709-c

53. Neumann E, Hasseli R, Ohl S, et al. Adipokines and autoimmunity in inflammatory arthritis. Cells. 2021;10(2):216. doi: https://doi.org/10.3390/cells10020216

54. Syrbe U, Callhoff J, Conrad K, et al. Serum adipokines levels in patients with ankylosing spondylitis and their relationship to clinical parameters and radiographic spinal progression. Arthritis Rheumatol. 2015;67(3):678-685. doi: https://doi.org/10.1002/art.38968

55. Kotulska A, Kucharz EJ, Brzezinska-Wcislo L, Wadas U. A decreased serum leptin level in patients with systemic sclerosis. Clin Rheumatol. 2001;20(4):300-302. doi: https://doi.org/10.1007/s100670170053

56. Frommer KW, Neumann E, Müller-Ladner U. Role of adipokines in systemic sclerosis pathogenesis. Eur J Rheumatol. 2020;7(S3):165-172. doi: https://doi.org/10.5152/eurjrheum.2020.19107

57. Zhao J-H, Huang X-L, Duan Y, et al. Serum adipokines levels in patients with systemic sclerosis: a meta-analysis. Mod Rheumatol. 2017;27(2):298-305. doi: 10.1080/14397595.2016.1193106

58. Lee YH, Song GG. Association of circulating resistin, leptin, adiponectin and visfatin with Behçet’s disease: a meta-analysis. Clin Exp Dermatol. 2018;43(5):536-545. doi: https://doi.org/10.1111/ced.13383

59. Scherer PE, Williams S, Fogliano M, et al. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem. 1995;270(45):26746-26749. doi: https://doi.org/10.1074/jbc.270.45.26746

60. Nakano Y, Tobe T, Choi-Miura NH, et al. Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma. J Biochem. 1996;120 (4):803-812. doi: https://doi.org/10.1093/oxfordjournals.jbchem.a021483

61. Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem. 1996;271(18):10697-10703. doi: https://doi.org/10.1074/jbc.271.18.10697

62. Maeda K, Okubo K, Shimomura I, et al. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem Biophys Res Commun. 1996;221(2):286-289. doi: https://doi.org/10.1006/bbrc.1996.0587

63. Woodward L, Akoumianakis I, Antoniadis C. Unravelling the adiponectin paradox: novel roles of adiponectin in the regulation of cardiovascular disease. Br J Pharmacol. 2017;174(22):4007-4020. doi: https://doi.org/10.1111/bph.13619

64. Ziemke F, Mantzoros CS. Adiponectin in insulin resistance: lessons from translational research. Am J Clin Nutr. 2010;91(1):258S-261S. doi: https://doi.org/10.3945/ajcn.2009.28449C

65. Chandran M, Phillips SA. Ciaraldi T, Henry RR. Adiponectin: more than just another fat cell hormone? Diabetes Care. 2003;26(8):2442-2450. doi: https://doi.org/10.2337/diacare.26.8.2442

66. Oh DK, Ciaraldi T, Henry RR. Adiponectin in health and disease. Diabetis Obes Metab. 2007.9(3):282-289. doi: https://doi.org/10.1111/j.1463-1326.2006.00610.x

67. Vasseur F, Lepretre F, Lasquemant C, Froguel P. The genetics of adiponectin. Curr Diab Rep. 2003;3(2):151-158. doi: https://doi.org/10.1007/s11892-003-0039-4

68. Liu M, Liu F. Regulation of adiponectin multimerization, singnaling and function. Best Pract Res Clin Endocrinol Metab. 2014;28(1):25-31. doi: https://doi.org/10.1016/j.beem.2013.06.003

69. Arita Y, Kihara S, Ouchi N, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun. 1999;257(1):79-83. doi: https://doi.org/10.1006/bbrc.1999.0255

70. Tsao T, Murrey HE, Hug C, et al. Oligomerization statedependent activation of NF-kappa B signaling pathway by adipocyte complementrelated protein of 30 kDa (Acrp30). J Biol Chem. 2002;277(33):29359-29362. doi: https://doi.org/10.1074/jbc.C200312200

71. Waki H, Yamauchi T, Kamon J, et al. Impaired multimerization of human adiponectin mutants associated with diabetes. Molecular structure and multimer formation of adiponectin. J Biol Chem. 2003;278(41):40352-40363. doi: https://doi.org/10.1074/jbc.M300365200

72. Peake PW, Kriketos AD, Campbell LV, et al. The metabolism of isoforms of human adiponectin: studies in human subjects and in experimental animals. Eur J Endocrinol. 2005;153(3):409-417. doi: https://doi.org/10.1530/eje.1.01978

73. Ebinuma H, Miyazaki O, Yago H, et al. A novel ELISA system for selective measurement of human adiponectin multimers by using proteases. Clin Chim Acta. 2006;372(1-2):47-53. doi: https://doi.org/10.1016/j.cca.2006.03.014

74. Fruebis J, Tsao TS, Javorschi S, et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci USA. 2001;98(4):2005-2010. doi: https://doi.org/10.1073/pnas.041591798

75. Waki H, Yamauchi T, Kamon J, et al. Generation of globular fragment of adiponectin by leukocyte elastase secreted by monocytic cell line THP-1. Endocrinology. 2005;146:790-796. doi: https://doi.org/10.1210/en.2004-1096

76. Schraw T, Wang ZV, Halberg N, et al. Plasma adiponectin complexes have distinct biochemical characteristics. Endocrinology. 2008;149(5):2270-2282. doi: https://doi.org/10.1210/en.2007-1561

77. van Andel M, Heijboer AC, Drent ML. Adiponectin and it isoforms in pathophysiology. Adv Clin Chem. 2018;85:115-147. doi: https://doi.org/10.1016/bs.acc.2018.02.007

78. Tomas E, Tsao TS, Saha AK, et al. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc Natl Acad Sci USA. 2002;99(25):16309-16313. doi: https://doi.org/10.1073/pnas.222657499

79. Yamauchi T, Kamon J, Minokoshi Y, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002;8(11):1288-1295. doi: https://doi.org/10.1038/nm.788

80. Tsao TS, Tomas E, Murrey HE, et al. Role of disulfide bonds in Acrp30/adiponectin structure and signaling specificity. Different oligomers activate different signal transduction pathways. J Biol Chem. 2003;278(50):50810-50817. doi: https://doi.org/10.1074/jbc.M309469200

81. Kadowaki T, Yamauchi T, Kubota N, et al. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest. 2006;116(7):1784-1792. doi: https://doi.org/10.1172/JCI29126

82. Pajvani UB, Hawkins M, Combs TP, et al. Complex distribution, not absolute amount ofadiponectin, correlates with thiazolidinedione-mediated improve-ment in insulin sensitivity. J Biol Chem. 2004;279(13):12152-12162. doi: https://doi.org/10.1074/jbc.M311113200

83. Basu R, Pajvani UB, Rizza RA, et al. Selective downregulation of the high molecular weight form of adiponectin in hyperinsulinemia and in type 2 diabetes: differential regulation from nondiabetic subjects. Diabetes. 2007;56(8):2174-2177. doi: https://doi.org/10.2337/db07-0185

84. Koenen TB, van Tits LJ, Holewijn S, et al. Adiponectin multimer distribution in patients with familial combined hyperlipidemia. Biochem Biophys Res Commun. 2008;376(1):164-168. doi: https://doi.org/10.1016/j.bbrc.2008.08.111

85. Yamauchi T, Kamon J, Ito Y, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003;423(6941):762-769. doi: https://doi.org/10.1038/nature01705

86. Tanabe H, Fujii Y, Okada-Iwabu M, et al. Crystal structures of the human adiponectin receptors. Nature. 2015;520(7547):312-316. doi: https://doi.org/10.1038/nature14301

87. Yoon MJ, Lee GY, Chung J-J, et al. Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMPactivated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor alpha. Diabetes. 2006;55(9):2562-2570. doi: https://doi.org/10.2337/db05-1322

88. Ruan H, Dong LQ. Adiponectin signaling and function in insulin target tissues. J Mol Cell Biol. 2016;8(2):101-109. doi: https://doi.org/10.1093/jmcb/mjw014

89. Holland WL, Miller RA, Wang ZV, et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat Med. 2011;17(1):55-63. doi: https://doi.org/10.1038/nm.2277

90. Lopez X, Goldfine AB, Holland WL, et al. Plasma ceramides are elevated in female children and adolescents with type 2 diabetes. J Pediatr Endocrinol Metab. 2013;26(9-10):995-998. doi: https://doi.org/10.1515/jpem-2012-0407

91. Combs TP, Mariliss EB. Adiponectin signaling in the liver. Rev Endocr Metab Disord. 2014;15(2):137-147. doi: https://doi.org/10.1007/s11154-013-9280-6

92. Winder WW, Hardie DG. AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol. 1999;277(1):E1-10. doi: https://doi.org/10.1152/ajpendo.1999.277.1.E1

93. Liu Z, Xiao T, Peng X, et al. APPLs: more than just adiponectin receptor binding proteins. Cell Signal. 2017; 2:76-84. doi: https://doi.org/10.1016/j.cellsig.2017.01.018

94. Kita S, Shimomura I. Stimulation of exosome biogenesis by adiponectin, a circrulating factor secreted from adipocytes. J Biochem. 2021;169(2):173-179. doi: https://doi.org/10.1093/jb/mvaa105

95. Holley RJ, Tai G, Williamson AJ, et al. Comparative quantification of the surfaceome of human multipotent mesenchymal progenitor cells. Stem Cell Reports. 2015;4(3):473-488. doi: https://doi.org/10.1016/j.stemcr.2015.01.007

96. Hug C, Wang J, Ahmad NS, et al. T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/ adiponectin. Proc Natl Acad Sci USA. 2004;101(28):10308-10313. doi: https://doi.org/10.1073/pnas.0403382101

97. Obata Y, Kita S, Koyama Y, et al. Adiponectin/T-cadherin system enhances exosome biogenesis and decreases cellular ceramides by exosomal release. JCI Insight. 2018;3(8):20-27. doi: https://doi.org/10.1172/jci.insight.99680

98. Holland WL, Xia JY, Johnson JA, et al. Inducible overexpression of adiponectin receptors highlight the roles of adiponectin-induced ceramidase signaling in lipid and glucose homeostasis. Mol Metab. 2017;6(3):267-275. doi: https://doi.org/10.1016/j.molmet.2017.01.002

99. Denzel MS, Scimia MC, Zumstein PM, et al. T-cadherin is critical for adiponectin-mediated cardioprotection in mice. J Clin Invest. 2010;120(12):4342-4352. doi: https://doi.org/10.1172/JCI43464

100. Vandivier RW, Ogden CA, Fadok VA, et al. Role of surfactant proteins A, D, and C1q in the clearance of apoptotic cells in vivo and in vitro: calreticulin and CD91 as a common collectin receptor complex. J Immunol. 2002;169(7):3978-3986. doi: https://doi.org/19.4049/jimmunol.169.7.3978

101. Gardai SJ, McPhillips KA, Frasch SC, et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through transactivation of LRP on the phagocyte. Cell. 2005;123(2):321-334. doi: https://doi.org/10.1016/j.cell.2005.08.032

102. Takemura Y, Ouchi N, Shibata R, et al. Adiponectin modulates inflammatory reactions via calreticulin receptor-dependent clearance of early apoptotic bodies. J Clin Invest. 2007;117(2):375-386. doi: https://doi.org/10.1172/JCI29709

103. Arita Y, Kihara S, Ouchi N, et al. Paradoxical decrease of an adiposespecific protein, adiponectin, in obesity. Biochem Biophys Res Commun. 1999;257(1):79-83. doi: https://doi.org/10.1006/bbrc.1999.0255

104. Halberg N, Shraw TD, Wang ZV, et al. Systemic fate of the adipocytederived factor adiponectin. Diabetes. 2009;58(9):1961-1970. doi: https://doi.org/10.2337/db08-1750

105. Cui J, Wu XD, Andrel J, et al. Relationships of total adiponectin and molecular weight fractions of adiponectin with free testosterone in African men and premenopausal women. J Clin Hypertens (Greenwich). 2010;12(12):957-963. doi: https://doi.org/10.1111/j.1751-7176.2010.00383.x

106. Blaak E. Gender differences in fat metabolism. Curr Opin Clin Nutr Metab Care. 2001;4(6):499-502. doi: https://doi.org/10.1097/00075197-200111000-00006

107. Xu A, Chan KW, Hoo RL, et al. Testosterone selectively reduces the high molecular weight form of adiponectin by inhibiting its secretion from adipocytes. J Biol Chem. 2005;280(18):18073-18080. doi: https://doi.org/10.1074/jbc.M414231200

108. Stern JH, Rutkowski JM, Scherer PE. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab. 2016;23(5):770-784. doi: https://doi.org/10.1016/j.cmet.2016.04.011

109. Goto M, Goto A, Morita A, et al. Low-molecular-weight adiponectin and high-molecular-weight adiponectin levels in relation to diabetes. Obesity (Silver Spring). 2014;22(2):401-407. doi: https://doi.org/10.1002/oby.20553

110. Saito I, Yamagishi K, Chei C-L, et al. Total and high molecular weight adiponectin levels and risk of cardiovascular disease in individuals with high blood glucose levels. Atherosclerosis. 2013;229(1):222-227. doi: https://doi.org/10.1016/j.atherosclerosis.2013.04.014

111. Ouchi N, Ohishi M, Kihara S, et al. Association of hypoadiponectinemia with impaired vasoreactivity. Hypertension. 2003;42(3):231-234. doi: https://doi.org/10.1161/01.HYP.0000083488.67550.B8

112. Trujillo ME, Scherer PE. Adiponectin: journey from an adipocyte secretory protein to biomarker of the metabolic syndrome. J Intern Med. 2005;257(2):167-175. doi: https://doi.org/10.1111/j.1365-2796.2004.01426.x

113. Liang KW, Lee WJ, Lee WL, et al. Decreased ratio of high-molecularweight to total adiponectin is associated with angiographic coronary atherosclerosis severity but not restenosis. Clin Chim Acta. 2009;405(1-2):114-118. doi: https://doi.org/10.1016/j.cca.2009.04.018

114. Gasbarrino K, Zheng H, Hafiane A, et al. Decreased adiponectinmediated signaling through the AdipoR2 pathway is associated with carotid plaque instability. Stroke. 2017;48(4):915-924. doi: https://doi.org/10.1161/STROKEAHA.116.015145

115. Wang Z, Nakayama T. Inflammation, a link between obesity and cardiovascular disease. Mediators Inflamm. 2010;2010:1-17. doi: https://doi.org/10.1155/2010/535918

116. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860-867. doi: https://doi.org/10.1038/nature05485

117. Makki K, Froguel P, Wolowczuk I. Adipose tissue in obesity-related inflammation and insulin resistance: cells, cytokines, and chemokines. ISRN Inflamm. 2013;2013:1-12. doi: https://doi.org/10.1155/2013/139239

118. Chen L, Chen R, Wang H, Liang F. Mechanisms linking inflammation to insulin resistance. Int J Endocrinol. 2015;2015:1-9. doi: https://doi.org/10.1155/2015/508409

119. Hulsmans M, Holvoet P. The vicious circle between oxidative stress and inflammation in atherosclerosis. J Cell Mol Med. 2010;14(1-2):70-78. doi: https://doi.org/10.1111/j.1582-4934.2009.00978.x

120. Garaulet M, Hernandez-Morante JJ, Perez de Heredia F, et al. Adiponectin, the controversial hormone. Public Health Nutr. 2007;10(10A):1145-1150. doi: https://doi.org/10.1017/S1368980007000638

121. Ouchi N, Walsh K. Adiponectin as an anti-inflammatory factor. Clin Chim Acta. 2007;380(1-2):24-30. doi: https://doi.org/10.1016/j.cca.2007.01.026

122. Berg AH, Combs TP, Du X, et al. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med. 2001;7(8):947-953. doi: https://doi.org/10.1038/90992

123. Dґıez JJ, Iglesias P. The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur J Endocr. 2003;148(3):293-300. doi: https://doi.org/10.1530/eje.0.1480293

124. Khan M, Joseph F. Adipose tissue and adipokines: the association with and application of adipokines in obesity. Scientifica (Cairo). 2014;2014:1-7. doi: https://doi.org/10.1155/2014/328592

125. Cheng KKY, Lam KSL, Wang Y, et al. Adiponectin-induced endothelial nitric oxide synthase activation and nitric oxide production are mediated by APPL1 in endothelial cells. Diabetes. 2007;56(5):1387-1394. doi: https://doi.org/10.2337/db06-1580

126. Chen X, Yuan Y, Wang Q, et al. Post-translational modification of adiponectin affects lipid accumulation, proliferation and migration of vascular smooth muscle cells. Cell Physiol Biochem. 2017;43(1):172-181. doi: https://doi.org/10.1159/000480336

127. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocr Metab. 2004;89(6):2548-2556. doi: https://doi.org/10.1210/jc.2004-0395

128. Niinaga R, Yamamoto H, Yoshii M, et al. Marked elevation of serum M2BP-adiponectin complex in men with coronary artery disease. Atherosclerosis. 2016;253:70-74. doi: https://doi.org/10.1016/j.atherosclerosis.2016.08.024

129. Sawicka M, Janowska J, Chudek J. Potential beneficial effect of some adipokines positively correlated with the adipose tissue content on the cardiovascular system. Int J Cardiol. 2016;222(Suppl. C):581-589. doi: https://doi.org/10.1016/j.ijcard.2016.07.054

130. Ehsan M, Singh KK, Lovren F, et al. Adiponectin limits monocytic microparticle-induced endothelial activation by modulation of the AMPK, Akt and NFκB signaling pathways. Atherosclerosis. 2016;245(Suppl. C):1-11. doi: https://doi.org/10.1016/j.atherosclerosis.2015.11.024

131. Devaraj S, Torok S, Dasu MR, et al. Adiponectin decreases C-reactive protein synthesis and secretion from endothelial cells. Arterioscler Thromb Vasc Biol. 2008;28(7):1368-1374. doi: https://doi.org/10.1161/ATVBAHA.108.163303

132. Shibata R, Ouchi N, Murohara T. Adiponectin and cardiovascular disease. Circ J. 2009;73(4):608-614. doi: https://doi.org/10.1253/circj.CJ-09-0057

133. Polyzos SA, Kountouras J, Zavos C, et al. The role of adiponectin in the pathogenesis and treatment of non-alcoholic fatty liver disease. Diabetes Obes Metab. 2010;12(5):365-383. doi: https://doi.org/10.1111/j.1463-1326.2009.01176.x

134. Silva TE, Colombo G, Schiavon LL. Adiponectin: a multitasking player in the field of liver disease. Diabetes Metab. 2014;40(2):95-107. doi: https://doi.org/10.1016/j.diabet.2013.11.004

135. Lee Y, Magkos F, Mankzoros CS, et al. Effects of leptin and adiponectin on pancreatic β-cell function. Methabolizm. 2011;60(12):1664-1672. doi: https://doi.org/10.1016/j.metabol.2011.04.008

136. Sweiss N, Sharma K. Adiponectin effects on the kidney. Best Pract Res Clin Endocrinol Metab. 2014;28(1):71-79. doi: https://doi.org/10.1016/j.beem.2013.08.002

137. Christou GA, Kiortsis DN. The role of adiponectin in renal physiology and development of albuminuria. J Endocrinol. 2014;221(2):R49-R61. doi: https://doi.org/10.1530/JOE-13-0578

138. Markaki A, Psylinakis E, Spyridaki A. Adiponectin and endstage renal disease. Hormones (Athenes). 2016;15(3):345-354. doi: https://doi.org/10.14310/horm.2002.1698

139. Song SH, Oh TR, Choi HS, et al. High serum adiponectin as a biomarker of renal dysfunction: Results from the KNOW-CKD study. Sci Rep. 2020;10(1):5598. doi: https://doi.org/10.1038/s.41598-020-62465-2

140. Chudek J, Adamczak M, Karkoszka H, et al. Plasma adiponectin concentration before and after successful kidney transplantation. Transplant Proc. 2003;35(6):2186-2189. doi: https://doi.org/10.1016/j.transproceed.2003.08.001

141. Emanuele E, Minoretti P, Altabas K, et al. Adiponectin expression in subcutaneous adipose tissue is reduced in women with cellulite. Int J Dermatol. 2011;50(4):412-416. doi: https://doi.org/10.1111/j.1365-4632.2010.04713.x

142. Adamczak M, Wiecek A, Funahashi T, et al. Decreased plasma adiponectin concentration in patients with essential hypertension. Am J Hypertens. 2003;16(1):72-75. doi: https://doi.org/10.1016/s0895-7061(02)03197-7

143. Ohashi K, Ouchi N, Matsuzawa Y. Adiponectin and hypertension. Am J Hypertens. 2011;24(3):263-269. doi: https://doi.org/10.1038/ajh.2010.216

144. Barbe A, Bongrani A, Mellouk N, et al. Mechanisms of adiponectin actions in fertility: an overview from gametogenesis to gestation in humans and animal models in normal and pathologic conditions. Int J Mol Sci. 2019;20(7):1526. doi: https://doi.org/10.3390/ijms20071526

145. Martin LJ. Implications of adiponectin in linking metabolism to testicular function. Endocrine. 2014;46(1):16-28. doi: https://doi.org/10.1007/s12020-013-0102-0

146. Choi HM, Doss HM, Kim KS. Multifaceted Physiological Roles of Adiponectin in inflammation and diseases. Int J Mol Sci. 2020;21(4):1219. doi: https://doi.org/10.3390/ijms21041219

147. Fantuzzi G. Adiponectin and inflammation: Consensus and controversy. J Allergy Clin Immunol. 2008;121(2):326-330. doi: https://doi.org/10.1016/j.jaci.2007.10.018

148. Ye JJ, Bian X, Lim J, et al. Adiponectin and related C1q/TNFrelated proteins bind selectively to anionic phospholipids and sphingolipids. Procl Natl Acad Sci USA. 2020;117(29):17381-17388. doi: https://doi.org/10.1073/pnas.1922270117

149. Cheng X, Folco EJ, Shimizu K, et al. Adiponectin induces pro-inflammatory programs in human macrophages and CD4+ T cells. J Biol Chem. 2012;287(44):36896-36904. doi: https://doi.org/10.1074/jbc.M112.409516

150. Choi HM, Lee Y-A, Lee SH, et al. Adiponectin may contribute to synovitis and joint destruction in rheumatoid arthritis by stimulating vascular endothelial growth factor, matrix metalloproteinase-1, and matrix metalloproteinase-13 expression in fibroblast-like synoviocytes more than proinflammatory mediators. Arthritis Res Ther. 2009;11(6):R161. doi: https://doi.org/10.1186/ar2844

151. Lee Y-A, Ji HI, Lee SH, et al. The role of adiponectin in the production of IL-6, IL-8, VEGF and MMPs in human endothelial cells and osteoblasts: Implications for arthritic joints. Exp Mol Med. 2014;46(1):e72. doi: https://doi.org/10.1038/emm.2013.141

152. Krumbholz G, Junker S, Meier FMP, et al. Response of human rheumatoid arthritis osteoblasts and osteoclasts to adiponectin. Clin Exp Rheumatol. 2017;35(3):406-414.

153. Brezovec N, Perdan-Pirkmajer K, Čučnik S, et al. Adiponectin deregulation in systemic autoimmune rheumatic diseases. Int J Mol Sci. 2021;22(8):4095. doi: https://doi.org/10.3390/ijms22084095

154. Przybyciński J, Dziedziejko V, Puchałowicz K, et al. Adiponectin in chronic kidney disease. Int J Mol Sci. 2020;21(24):9375. doi: https://doi.org/10.3390/ijms21249375

155. Christou GA, Kiortsis DN. The role of adiponectin in renal physiology and development of albuminuria. J Endocrinol. 2014;221(2):R49-61. doi: https://doi.org/10.1530/JOE-23-0578

156. Peng Y-J, Shen T-L, Chen Y-S, et al. Adiponectin and adiponectin receptor 1 overexpression enhance inflammatory bowel disease. J Biomed Sci. 2018;25(1):24. doi: https://doi.org/10.1186/s12929-018-0419-3

157. Pereira RI, Snell-Bergeon J-K, Erickson C, et al. Adiponectin dysregulation and insulin resistance in type 1 diabetes. J Clin Endocrinol Metab. 2012;97(4):E642-647. doi: https://doi.org/10.1210/jc.2011-2542

158. Oraby SS, Ahmed ES, Farag TS, et al. Adiponectin as inflammatory biomarker of chronic obstructive pulmonary disease. Egypt J Chest Dis Tuberc. 2014;63(3):583-587. doi: https://doi.org/10.1016/j.ejcdt.2014.02.006

159. Vitsas V, Koutsoukou A, Michalopoulou P, et al. Biomarkers in COPD exacerbation, the role of adiponectin. Eur Resp J. 2014;44(58):3615.

160. Panagopoulou P, Fotoulaki M, Manolitsas A, et al. Adiponectin and body composition in cystic fibrosis. J Cyst Fibros. 2008;7(3):244-251. doi: https://doi.org/10.1016/j.jcf.2007.10.003

161. Wahab AA, Allangawi M, Thomas M, et al. Sputum and plasma adiponectin levels in clinically stable adult cystic fibrosis patients with CFTR I1234V mutation. Transl Med Commun. 2020;5(2):1-7. doi: https://doi.org/10.1186/s41231-020-00053-2

162. Ruiyang B, Panayi A, Ruifang W, et al. Adiponectin in psoriasis and its comorbidities: a review. Lipids Health Dis. 2021;20(1):87. doi: https://doi.org/10.1186/s12944-021-01510-z

163. Kelesidis I, Kelesidis T, Mantzoros CS. Adiponectin and cancer: a systemic review. Br J Canc. 2006;94:1221-1225. doi: https://doi.org/10.1038/sj.bjc.6603051

164. Dalamaga M, Diakopoulos KN, Mantzoros CS. The role of adiponectin in cancer: a review of current evidence. Endocr Rev. 2012;33(4):547-594. doi: https://doi.org/10.1210/er.2011-1015

165. Petridou E, Mantzoros C, Dessypris N, et al. Plasma adiponectin concentrations in relation to endometrial cancer: a case–control study in Greece. J Clin Endocrinol Metab. 2003;88(3):993-997. doi: https://doi.org/10.1210/jc.2002-021209

166. Mantzoros C, Petridou E, Dessypris N, et al. Adiponectin and breast cancer risk. J Clin Endocrinol Metab. 2004;89(3):1102-1107. doi: https://doi.org/10.1210/jc.2003-031804

167. Petridou E, Mantzoros CS, Dessypris N, et al. Adiponectin in relation to childhood myeloblastic leukaemia. Br J Cancer. 2006;94(1):156-160. doi: https://doi.org/10.1038/sj.bjc.6602896

168. Wei E, Giovannucci E, Fuchs C, et al. Low plasma adiponectin levels and the risk of colorectal cancer in men: a prospective study. J Natl Cancer Inst. 2005;97(22):1688-1694. doi: https://doi.org/10.1093/jnci/dji376

169. Ishikawa M, Kitayama J, Kazama S, et al. Plasma adiponectin and gastric cancer. Clin Cancer Res. 2005;11(2 Pt 1):466-472.

170. Goktas S, Yilmaz MI, Caglar K, et al. Prostate cancer and adiponectin. Urology. 2005;65(6):1168-1172. doi: https://doi.org/10.1016/j.urology.2004.12.053

171. Wang Y, Lam KS, Xu JY, et al. Adiponectin inhibits cell proliferation by interacting with several growth factors in an oligomerizationdependent manner. J Biol Chem. 2005;280(18):18341-18347. doi: https://doi.org/10.1074/jbc.M501149200

172. Goldstein BJ, Scalia R. Adiponectin: A novel adipokine linking adipocytes and vascular function. J Clin Endocrinol Metab. 2004;89(4):2563-2568. doi: https://doi.org/10.1210/jc.2004-0518

173. Saitoh M, Nagai K, Nakagawa K, et al. Adenosine induces apoptosis in the human gastric cancer cells via an intrinsic pathway relevant to activation of AMP-activated protein kinase. Biochem Pharmacol. 2004;67(10):2005-2011. doi: https://doi.org/10.1016/j.bcp.2004.01.020

174. Kakino A, Fujita Y, Sawamura T. Adiponectin as a blocker of oxidized LDL. Atherosclerosis. 2016;252:e103. doi: https://doi.org/10.1016/j.atherosclerosis.2016.07.578

175. Brakenhielm E, Veitonmaki N, Cao R, et al. Adiponectin-induced antiangiogenesis and antitumor activity involve caspasemediated endothelial cell apoptosis. Proc Natl Acad Sci USA. 2004;101(8):2476-2481. doi: https://doi.org/10.1073/pnas.0308671100

176. Miyazaki T, Bub JD, Uzuki M, et al. Adiponectin activates c-Jun NH(2)-terminal kinase and inhibits signal transducer and activator of transcription 3. Biochem Biophys Res Commun. 2005;333(1):79-87. doi: https://doi.org/10.1016/j.bbcr.2005.05.076

177. Hebbard LW, Garlatti M, Young LJ, et al. T-Cadherin supports angiogenesis and adiponectin association with the vasculature in a mouse mammary tumor model. Cancer Res. 2008;68(5):1407-1416. doi: https://doi.org/10.1158/0008-5472.CAN-07-2953

178. Lee MH, Klein RL, El-Shewy HM, et al. The adiponectin receptors AdipoR1 and AdipoR2 activate ERK1/2 through a Src/Rasdependent pathway and stimulate cell growth. Biochemistry. 2008;47(44):11682-11692. doi: https://doi.org/10.1021/bi801451f

179. Park J, Euhus DM, Scherer PE. Paracrine and endocrine effects of adipose tissue on cancer development and progression. Endocr Rev. 2011;32(4):550-570. doi: https://doi.org/10.1210/er.2010-0030

180. Tumminia A, Vinciguerra F, Parisi M, et al. Adipose tissue, obesity and adiponectin: role in endocrine cancer risk. Int J Mol Sci. 2019;20(12):2863. doi: https://doi.org/10.3390/ijms20122863

181. Mitsiades N, Pazaitou-Panayiotou K, Aronis KN, et al. Circulating adiponectin is inversely associated with risk of thyroid cancer: In vivo and in vitro studies. J Clin Endocrinol Metab. 2011;96(12):E2023-2028. doi: https://doi.org/10.1210/jc.2010-1908

182. Abooshahab R, Yaghmaei P, Ghadaksaz HG, Hedayati M. Lack of association between serum adiponectin/leptin levels and medullary thyroid cancer. Asian Pacific J Cancer Prev. 2016;17(8):3861-3864. doi: https://doi.org/10.14456/apjcp.2016.183/APJCP.2016.17.8.3861

183. Taliaferro-Smith L, Nagalingam A, Zhong D, et al. LKB1 is required for adiponectin-mediated modulation of AMPK-S6K axis and inhibition of migration and invasion of breast cancer cells. Oncogene. 2009;28(29):2621-33. doi: https://doi.org/10.1038/onc.2009.129

184. Kim K., Baek A, Hwang JE, et al. Adiponectin-activated AMPK stimulates dephosphorylation of AKT through protein phosphatase 2A activation. Cancer Res. 2009;69(9):4018-4026. doi: https://doi.org/10.1158/0008-5472.CAN-08-2641

185. Mery G, Eupaulard O, Borel A-L, et al. COVID-19: underlining adipokine storm and angiotensin 1-7 umbrella. Front Immunol. 2020;11(1714):1-10. doi: https://doi.org/10.3389/fimmu.2020.01714

186. van Zelst CM, Janssen ML, Pouw N, et al. Analyses of abdominal adiposity and metabolic syndrome as risk factors for respiratory distress in COVID-19. BMJ Open Respir Res. 2020;7(1):e000792. doi: https://doi.org/10.1136/bmjresp-2020-000792

187. Caterino M, Gelzo M, Sol S, et al. Dysregulation of lipid metabolism and pathological inflammation in patients with COVID-19. Sci Rep. 2021;11(1):2941. doi: https://doi.org/10.1038/s41598-021-82426-7

188. Lockhart SM, O’Rahilly S. When two pandemics meet: why is obesity associated with increased COVID-19 mortality? Med (N Y). 2020;1(1):33-42. doi: https://doi.org/10.1016/j.medj.2020.06.005

189. Kearns SM, Ahenr KW, Patrie JT, et al. Reduced adiponectin levels in patients with COVID-19 acute respiratory failure: A case-control study. Physiol Rep. 2021;9(7):e14843. doi: https://doi.org/10.14814/phy2.14843

190. Kruglikov IL, Scherer PE. The role of adipocytes and adipocyte-like cells in the severity of COVID-19 infection. Obesity (Silver Spring). 2020;28(7):1187-1190. doi: https://doi.org/10.1002/oby.22856

191. Kaur G, Lungarella G, Rahman I. SARS-CoV-2 COVID-19 susceptibility and lung inflammatory storm by smoking and vaping. J Inflamm. (Lond). 2020;17:17-21. doi: https://doi.org/10.1186/s12950-020-00250-8

192. Shimizu M. Clinical features of cytokine storm syndrome. (chapter in the book published by Springer and edited by Cron RQ, Behrens E.). Clinical features of cytokine storm syndrome. Cham: Springer; 2019:31-42. doi: https://doi.org/10.1007/978-3-030-22094-5

193. Ragab D, Eldin HS, Taeimah M, et al. The COVID-19 cytokine storm; what we know so far. Front Immunol. 2020;11:1446. doi: https://doi.org/10.3389/fimmu.2020.01446

194. Muller JA, Grob R, Kleger A. SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas. Nat Metab. 2021;3(2):149-165. doi: https://doi.org/10.1038/s42255-021-00347-1

195. Tang X, Uhl S, Zhang T, et al. SARS-CoV-2 infection induces beta cell transdifferentiation. Cell Metab. 2021;33(8):1577-1591. doi: https://doi.org/10.1016/j.cmet.2021.05.015

196. Geravandi S, Mahmoudi-Aznaveh A, Azizi Z, et al. SARS-CoV-2 and pancreas: a potential pathological interaction? Trends Endocrinol Metab. 2021;1622:1-4. doi: https://doi.org/10.1016/j.tem.2021.07.004

197. Bornstein SR, Dalan R, Hopkins D, et al. Endocrine and metabolic link to coronavirus infection. Nat Rev Endocrinol. 2020;16(2020):297-298. doi: https://doi.org/10.1038/s41574-020-0353-9

198. Ibrahim S, Monaco GSF, Sims EK. Not so sweet and simple: impacts of SARS-CoV-2 on the β cell. Islets. 2021;13(3-4):66-79. doi: https://doi.org/10.1080/19382014.2021.1909970

199. Das L, Bhadada SK. COVID-19-associated new-onset hyperglycaemia: a reversible entity or persistent risk. Postgrad Med J. 2021;postgradmedj-2021-140807. doi: https://doi.org/10.1136/postgradmedj-2021-14807

200. Rubina KA, Sabitova NR, Efimenko AYu, et al. Proteolytic enzyme and adiponectin receptors as potential targets for COVID-19 therapy. Cariovasc Therapy and Prevention. 2021;20(3):2791. doi: https://doi.org/10.15829/1728-8800-2021-2791

201. Padro IMCG. Is there a link between hyperadiponectinemia in newborns and a better prognosis in COVID-19 infection? Ann Pediatr Res. 2021;5(1):1057.

202. Menzaghi C, Trischitta V. The adiponectin paradox for allcause and cardiovascular mortality. Diabetes. 2018;67(1):12-22. doi: https://doi.org/10.2337/dbi17-0016

203. Wang TJ, Larson MG, Levy D. Plasma natriuretic peptide levels and the risk of cardiovascular events and death. N Engl J Med. 2004;350(7):655-663. doi: https://doi.org/10.1056/NEJMOA031994

204. Tsukamoto O, Fujita M, Kato M. Natriuretic peptides enhance the production of adiponectin in human adipocytes and in patients with chronic heart failure. J Am Coll Cardiol. 2009;53(22):2070-2077. doi: https://doi.org/10.1016/j.jacc.2009.02038

205. Halberg N, Schraw TD, Wang ZV, et al. Systemic fate of the adipocytederived factor adiponectin. Diabetes. 2009;58(9):1961-1970. doi: https://doi.org/10.3227/db08-1750

206. Sowka A, Dobrzyn P. Role of perivascular adipose tissue-derived adiponectin in vascular homeostasis. Cells. 2021;10(6):1485. doi: https://doi.org/10.3390/cells10061485

207. Zhao S, Kusminski CM, Scherer PE. Adiponectin, leptin and cardiovascular disorders. Circ Res. 2021;128(1):136-149. doi: https://doi.org/10.1161/CIRCRESAHA.120.314458

208. Tsutamoto T, Tanaka T, Sakai H, et al. Total and high molecular weight adiponectin, haemodynamics, and mortality in patients with chronic heart failure. Eur Heart J. 2007;28(14):1723-1730. doi: https://doi.org/10.1093/eurheartj/ehm154

209. Karas MG, Benkeser D, Arnold AM, et al. Relations of plasma total and high-molecular-weight adiponectin to new-onset heart failure in adults ≥65 years of age (from the Cardiovascular Health study). Am J Cardiol. 2014;113(2):328-334. doi: https://doi.org/10.1016/j.amjcard.2013.09.027

210. Menzaghi C, Xu M, Salvemini L, et al. Circulating adiponectin and cardiovascular mortality in patients with type 2 diabetes mellitus: evidence of sexual dimorphism. Cardiovasc Diabetol. 2014;13:130. doi: https://doi.org/10.1186/s12933-014-0130-y

211. Chang E, Varghese M, Singer K. Gender sex differences in adipose tissue. Curr Diab Rep. 2018;18(9):69. doi: https://doi.org/10.1007/s11892-018-1031-3

212. Wang Y, Ma XL, Lau WB. Cardivascular adiponectin resistnce: the critical role of adiponectin receptor modificarion. Trends Endocrinol Metab. 2017;28(7):519-530. doi: https://doi.org/10.1016/j.tem.2017.03.004

213. Webster AC, Nagler EV, Morton RL, et al. Chronic kidney disease. Lancet. 2017;389(10075):1238-1252. doi: https://doi.org/10.1016/S0140-6736(16)32064-5

214. Menon V, Li L, Wang X, et al. Adiponectin and mortality in patients with chronic kidney disease. J Am Soc Nephrol. 2006;17(9):2599-2606. doi: https://doi.org/10.1681/ASN.2006040331

215. Costacou T, Orchard TJ. Adiponectin: good, bad or just plain ugly? Kidney Int. 2008;74(5):549-551. doi: https://doi.org/10.1038/ki.2008.262

216. Beberashvili I, Cohen-Cesla T, Khatib A, et al. Comorbidity burden may explain adiponectin’s paradox as a marker of increased mortality risk in hemodialysis patients. Sci Rep. 2021;11(1):9087. doi: https://doi.org/10.1038/s41598-021-88558-0

217. Waragai M, Ho G, Takamatsu Y, et al. Importance of adiponectin activity in the pathogenesis of Alzheimer’s disease. Ann Clin Transl Neurol. 2017;4(8):591-600. doi: https://doi.org/10.1002/acn3.436

218. Waragai M, Ho G, Takamatsu Y, et al. Adiponectin paradox in Alzheimer’s disease; relevance to amyloidogenic evolvability? Front Endocrinol (Lausanne). 2020;11:108. doi: https://doi.org/10.3389/fendo.2020.00108

219. Une K, Takei YA, Tomita N, et al. Adiponectin in plasma and cerebrospinal fluid in MCI and Alzheimer’s disease. Eur J Neurol. 2011;18(7):1006-1009. doi: https://doi.org/10.1111/j.1468-1331.2010.03194.x

220. Lee CH, Lui DTW, Cheung CYY, et al. Higher circulating adiponectin concentrations predict incident cancer in type 2 diabetes – The adiponectin paradox. J Clin Endocrinol Metab. 2020;105(4):e1387-e1396. doi: https://doi.org/10.1210/clinem/dgaa075

221. Ho G, Ali A, Takamatsu Y, et al. Diabetes, inflammation, and the adiponectin paradox: Therapeutic targets in SARS-CoV-2. Drug Discov Today. 2021;26(8):2036-2044. doi: https://doi.org/10.1016/j.drudis.2021.03.013

222. Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev. 2005;26(3):439-451. doi: https://doi.org/10.1210/er.2005-0005

223. Yamauchi T, Kamon J, Waki H, et al. Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis. J Biol Chem. 2003;278(4):2461-2468. doi: https://doi.org/10.1074/jbc.M209033200

224. Okamoto Y, Kihara S, Ouchi N, et al. Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation. 2002;106(22):2767-2770. doi https://doi.org/10.1161/01.cir.0000042707.50032.19

225. Kubota N, Terauchi Y, Yamauchi T, et al. Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem. 2002;277(29):25863-25866. doi: https://doi.org/10.1074/jbc.C200251200

226. Matsuda M, Shimomura I, Sata M, et al. Role of adiponectin in preventing vascular stenosis. The missing link of adipovascular axis. J Biol Chem. 2002;277(40):37487-37491. doi: https://doi.org/10.1074/jbc.M206083200

227. Combs TP, Pajvani UB, Berg AH, et al. A transgenic mouse with a deletion in the collagenous domain of adiponectin displays elevated circulating adiponectin and improved insulin sensitivity. Endocrinology. 2004;145(1):367-383. doi: https://doi.org/10.1210/en.2003-1068

228. Shklyaev S, Aslanidi G, Tennant M, et al. Sustained peripheral expression of transgene adiponectin offsets the development of diet-induced obesity in rats. Proc Natl Acad Sci USA. 2003;100(24):14217-14222. doi: https://doi.org/20/2073/pnas.2333912100

229. Kohlbrenner E, Aslanidi G, Nash K, et al. Successful production of pseudotyped rAAV vectors using a modified bacilovirus expression system. Mol Ther. 2005;12(6):12171-12225. doi: https://doi.org/10.1016/j.ymthhe.2005.08.018

230. Li X, Zhang D, Vatner DF, et al. Mechanisms by which adiponectin reverses high fat diet-induced insulin resistance in mice. Proc Natl Acad Sci USA. 2020;117(51):32584-32593. doi: https://doi.org/10.1073/pnas.1922169117

231. Mullen KL, Smith AC, Junkin KA, et al. Globular adiponectin resistance develops independently of impaired insulinstimulated glucose transport in soleus muscle from high-fatfed rats. Am J Physiol Endocrinol Metab. 2007;293(1):E83-90. doi: https://doi.org/10.1152/ajpendo.00545.2006

232. Vaughan OR, Rosario FJ, Powell TL, et al. Normalisation of circulating adiponectin levels in obese pregnant mice prevents cardiac dysfunction in adult offspring. Int J Obes (Lond). 2020;44(2):488-499. doi: https://doi.org/10.1038/s41366-019-0374-4

233. Kalkman HO. An explanation for adiponectin paradox. Pharmaceuticals. 2021;14(12):1266. doi: https://doi.org/10.3390/ph14121266


Рецензия

Для цитирования:


Шкляев С.С., Мельниченко Г.А., Волеводз Н.Н., Фалалеева Н.А., Иванов С.А., Каприн А.Д., Мокрышева Н.Г. Адипонектин: плейотропный гормон с множеством функций. Проблемы Эндокринологии. 2021;67(6):98-112. https://doi.org/10.14341/probl12827

For citation:


Shklyaev S.S., Melnichenko G.A., Volevodz N.N., Falaleeva N.A., Ivanov S.A., Kaprin A.D., Mokrysheva N.G. Adiponectin: a pleiotropic hormone with multifaceted roles. Problems of Endocrinology. 2021;67(6):98-112. https://doi.org/10.14341/probl12827

Просмотров: 273


ISSN 0375-9660 (Print)
ISSN 2308-1430 (Online)