Two models of insulin resistance development and the strategy to combat age-related diseases: literature review
https://doi.org/10.14341/probl13090
Abstract
BACKGROUND: Insulin resistance (IR) is the root cause of most age-related diseases (ARD), the major challenge for today’s health systems. Therefore, adequate understanding of the mechanisms underlying IR is essential to build effective ARD prevention.
OBJECTIVE: Analyze the existing models of IR causation and progression in order to justify the most effective ARD prevention strategy.
METHODS: Search and analysis of publications on IR and hyperinsulinemia (HI) from databases elibrary.ru, PubMed, and Google Scholar.
RESULTS: Two models of IR development are analyzed along with the relationship between IR, HI, and obesity. The prevailing model considers obesity (imbalance of caloric intake and energy expenditure) as the main factor in the development of IR; HI is seen as a consequence of IR, mostly insignificant for the outcomes of IR. The model contradicts many experimental and clinical findings. The strategy to combat ARDs that follows from the model (hypocaloric diet and pharmacotherapy of IR) has proven mostly ineffective.
The alternative model (IR as a consequence of HI, and obesity as one of IR manifestations) is more consistent with the pool of experimental and clinical data. It more precisely predicts ARD development and allows more adequate correction of adverse lifestyle factors. It corresponds to a different strategy for combating ARD: emphasis on low-carb diet and longer fasting window combined with consideration of other factors of IR.
CONCLUSION: If the prevailing model of IR development is revised, this should open up opportunities for more effective early prevention of a wide range of chronic diseases in which the role of IR is significant.
About the Authors
A. V. Martyushev-PokladFederal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation
Andrey V. Martyushev-Poklad - MD, PhD.
25 bld 2 Petrovka street, 107031 Moscow.
SPIN-код: 3505-7526
Competing Interests:
None
D. S. Yankevich
Russian Federation
Dmitry S. Yankevich - MD, PhD.
25 bld 2 Petrovka street, 107031 Moscow.
SPIN-код: 6506-8058
Competing Interests:
None
M. V. Petrova
Russian Federation
Marina V. Petrova - MD, PhD, Professor.
25 bld 2 Petrovka street, 107031 Moscow.
SPIN-код: 9132-4190
Competing Interests:
None
N. G. Savitskaya
Russian Federation
Nataliya G. Savitskaya - MD, PhD.
25 bld 2 Petrovka street, 107031 Moscow.
SPIN-код: 1459-6085
Competing Interests:
None
References
1. Bauer UE, Briss PA, Goodman RA, Bowman BA. Prevention of chronic disease in the 21st century: elimination of the leading preventable causes of premature death and disability in the USA. Lancet. 2014;384(9937):45-52. doi: https://doi.org/10.1016/S0140-6736(14)60648-6.
2. Eurostat [Internet]. Preventable and treatable mortality statistics. Available from: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Preventable_and_treatable_mortality_statistics [cited: 08.01.2022]
3. Lawrence RD. An insulin resistant case of diabetes. Proceedings of the Royal Society of Medicine. 1927;21(2): 250-251.
4. Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988;37(12):1595-1607. doi: https://doi.org/10.2337/diab.37.12.1595
5. Van Cauter E, Blackman JD, Roland D, et al. Modulation of glucose regulation and insulin secretion by circadian rhythmicity and sleep. J Clin Invest. 1991;88(3):934-942. doi: https://doi.org/10.1172/JCI115396.
6. Barbour LA, McCurdy CE, Hernandez TL, et al. Cellular mechanisms for insulin resistance in normal pregnancy and gestational diabetes. Diabetes Care. 2007;30(S2):S112-119. doi: https://doi.org/10.2337/dc07-s202.
7. Kampmann U, Knorr S, Fuglsang J, Ovesen P. Determinants of Maternal Insulin Resistance during Pregnancy: An Updated Overview. J Diabetes Res. 2019;2019:1-9. doi: https://doi.org/10.1155/2019/5320156
8. Kelsey MM, Zeitler PS. Insulin Resistance of Puberty. Curr Diab Rep. 2016;16(7):64. doi: https://doi.org/10.1007/s11892-016-0751-5
9. Makisheva RT. Adaptivnyi smysl insulinorezistentnosti. Vestnik novykh meditsinskikh tekhnologii. [Internet]. 2016;1:60-67. (In Russ.). Доступно по: https://cyberleninka.ru/article/n/adaptivnyy-smysl-insulinorezistentnosti [Ссылка активна на 14.07.2021].
10. Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev. 2018;98(4):2133-2223. doi: https://doi.org/10.1152/physrev.00063.2017
11. Barsukov IA, Demina AA. Obesity and insulin resistance: pathogenesis and ways of correction. RMJ. 2021;29(2):26-30. (In Russ.).
12. Kraft JR. Detection of Diabetes Mellitus In Situ (Occult Diabetes). Lab Med. 1975;6(2):10-22. doi: https://doi.org/10.1093/labmed/6.2.10
13. Crofts C, Schofield G, Zinn C, et al. Identifying hyperinsulinaemia in the absence of impaired glucose tolerance: An examination of the Kraft database. Diabetes Res Clin Pract. 2016;118(2):50-57. doi: https://doi.org/10.1016/j.diabres.2016.06.007
14. DiNicolantonio JJ, Bhutani J, OKeefe JH, Crofts C. Postprandial insulin assay as the earliest biomarker for diagnosing pre-diabetes, type 2 diabetes and increased cardiovascular risk. Open Heart. 2017;4(2):e000656. doi: https://doi.org/10.1136/openhrt-2017-000656
15. Taubes G. The science of obesity: what do we really know about what makes us fat? An essay by Gary Taubes. BMJ. 2013;346(5):f1050. doi: https://doi.org/10.1136/bmj.f1050
16. Newburgh LH, Johnston MW. The Nature of Obesity. J Clin Invest. 1930;8(2):197-213. doi: https://doi.org/10.1172/JCI100260
17. Noakes TD. So What Comes First: The Obesity or the Insulin Resistance? And Which Is More Important? Clin Chem. 2018;64(1):7-9. doi: https://doi.org/10.1373/clinchem.2017.282962
18. Ludwig DS, Ebbeling CB. The Carbohydrate-Insulin Model of Obesity: Beyond «Calories In, Calories Out». JAMA Intern Med. 2018;178(8):1098-1103. doi: https://doi.org/10.1001/jamainternmed.2018.2933
19. Templeman NM, Skovsø S, Page MM, et al. A causal role for hyperinsulinemia in obesity. J Endocrinol. 2017;232(3):R173-R183. doi: https://doi.org/10.1530/JOE-16-0449
20. Paris M, Bernard-Kargar C, Berthault MF, et al. Specific and combined effects of insulin and glucose on functional pancreatic beta-cell mass in vivo in adult rats. Endocrinology. 2003;144(6):2717-2727. doi: https://doi.org/10.1210/en.2002-221112
21. Mahler RJ. The relationship between the hyperplastic pancreatic islet and insulin insensitivity in obesity. Acta Diabetol Lat. 1981;18(1):1-17. doi: https://doi.org/10.1007/BF02056101
22. Astley CM, Todd JN, Salem RM, et al. Genetic Evidence That Carbohydrate-Stimulated Insulin Secretion Leads to Obesity. Clin Chem. 2018;64(1):192-200. doi: https://doi.org/10.1373/clinchem.2017.280727
23. Corkey BE. Banting lecture 2011: hyperinsulinemia: cause or consequence? Diabetes. 2012;61(1):4-13. doi: https://doi.org/10.2337/db11-1483
24. Katsyuba E, Romani M, Hofer D, Auwerx J. NAD+ homeostasis in health and disease. Nat Metab. 2020;2(1):9-31. doi: https://doi.org/10.1038/s42255-019-0161-5
25. Maiese K. Nicotinamide as a Foundation for Treating Neurodegenerative Disease and Metabolic Disorders. Curr Neurovasc Res. 2021;18(1):134-149. doi: https://doi.org/10.2174/1567202617999210104220334
26. Kopp W. Development of Obesity: The Driver and the Passenger. Diabetes, Metab Syndr Obes Targets Ther. 2020;13(1):4631-4642. doi: https://doi.org/10.2147/DMSO.S280146
27. Kopp W. High-insulinogenic nutrition - an etiologic factor for obesity and the metabolic syndrome? Metabolism. 2003;52(7):840-844. doi: https://doi.org/10.1016/s0026-0495(02)05294-0
28. Kopp W. How Western Diet And Lifestyle Drive The Pandemic Of Obesity And Civilization Diseases. Diabetes, Metab Syndr Obes Targets Ther. 2019;12(1):2221-2236. doi: https://doi.org/10.2147/DMSO.S216791
29. Mehran AE, Templeman NM, Brigidi GS, et al. Hyperinsulinemia drives diet-induced obesity independently of brain insulin production. Cell Metab. 2012;16(6):723-737. doi: https://doi.org/10.1016/j.cmet.2012.10.019
30. Le Stunff C, Bougneres P. Early changes in postprandial insulin secretion, not in insulin sensitivity, characterize juvenile obesity. Diabetes. 1994;43(5):696-702. doi: https://doi.org/10.2337/diab.43.5.696
31. Schofield CJ, Sutherland C. Disordered insulin secretion in the development of insulin resistance and type 2 diabetes. Diabet Med. 2012;29(8):972-979. doi: https://doi.org/10.1111/j.1464-5491.2012.03655.x
32. Nolan CJ, Prentki M. Insulin resistance and insulin hypersecretion in the metabolic syndrome and type 2 diabetes: time for a conceptual framework shift. Diab Vasc Dis Res. 2019;16(2):118-127. doi: https://doi.org/10.1177/1479164119827611
33. Tricò D, Natali A, Arslanian S, et al. Identification, pathophysiology, and clinical implications of primary insulin hypersecretion in nondiabetic adults and adolescents. JCI Insight. 2018;3(24):e124912. doi: https://doi.org/10.1172/jci.insight.124912
34. Van Vliet S, Koh HE, Patterson BW, et al. Obesity Is Associated With Increased Basal and Postprandial β-Cell Insulin Secretion Even in the Absence of Insulin Resistance. Diabetes. 2020;69(10):2112-2119. doi: https://doi.org/10.2337/db20-0377
35. Gregory JM, Cherrington AD, Moore DJ. The Peripheral Peril: Injected Insulin Induces Insulin Insensitivity in Type 1 Diabetes. Diabetes. 2020;69(5):837-847. doi: https://doi.org/10.2337/dbi19-0026
36. Thomas DD, Corkey BE, Istfan NW, Apovian CM. Hyperinsulinemia: An Early Indicator of Metabolic Dysfunction. J Endocr Soc. 2019;3(9):1727-1747. doi: https://doi.org/10.1210/js.2019-00065
37. Zhang AMY, Wellberg EA, Kopp JL, Johnson JD. Hyperinsulinemia in Obesity, Inflammation, and Cancer. J Diabetes Metab. 2021;45(3):285-311. doi: https://doi.org/10.4093/dmj.2020.0250
38. Crofts CAP, Zinn C, Wheldon M, Schofield G. Hyperinsulinemia: A unifying theory of chronic disease? Diabesity. 2015;1(4):34-43. doi: https://doi.org/10.15562/diabesity.2015.19
39. Holt SH, Miller JC, Petocz P. An insulin index of foods: the insulin demand generated by 1000-kJ portions of common foods. Am J Clin Nutr. 1997;66(5):1264-1276. doi: https://doi.org/10.1093/ajcn/66.5.1264
40. Van Cauter E, Shapiro ET, Tillil H, Polonsky KS. Circadian modulation of glucose and insulin responses to meals: relationship to cortisol rhythm. Am J Physiol Metab. 1992;262(4):E467-E475. doi: https://doi.org/10.1152/ajpendo.1992.262.4.E467
41. Jakubowicz D, Barnea M, Wainstein J, Froy O. High caloric intake at breakfast vs. dinner differentially influences weight loss of overweight and obese women. Obesity (Silver Spring). 2013;21(12):2504-2512. doi: https://doi.org/10.1002/oby.20460
42. Gugliucci A. Fructose at the crossroads of the metabolic syndrome and obesity epidemics. Front Biosci. 2019;24(2):4713. doi: https://doi.org/10.2741/4713
43. Weir GC, Bonner-Weir S. Five stages of evolving beta-cell dysfunction during progression to diabetes. Diabetes. 2004;53(3):S16-S21.
44. Stumvoll M, Jacob S, Wahl HG, et al. Suppression of systemic, intramuscular, and subcutaneous adipose tissue lipolysis by insulin in humans. J Clin Endocrinol Metab. 2000;85(10):3740-3745. doi: https://doi.org/10.1210/jcem.85.10.6898
45. Tobias DK, Chen M, Manson JE, et al. Effect of low-fat diet interventions versus other diet interventions on long-term weight change in adults: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2015;3(12):968-979. doi: https://doi.org/10.1016/S2213-8587(15)00367-8
46. Wing RR, Phelan S. Long-term weight loss maintenance. Am J Clin Nutr. 2005;82(1):222S-225S. doi: https://doi.org/10.1093/ajcn/82.1.222S
47. Tucker S, Bramante C, Conroy M, et al. The Most Undertreated Chronic Disease: Addressing Obesity in Primary Care Settings. Curr Obes Rep. 2021;10(3):396-408. doi: https://doi.org/10.1007/s13679-021-00444-y
48. Dankner R, Chetrit A, Shanik MH, et al. Basal state hyperinsulinemia in healthy normoglycemic adults heralds dysglycemia after more than two decades of follow up. Diabetes Metab Res Rev. 2012;28(7):618-624. doi: https://doi.org/10.1002/dmrr.2322
49. Zavaroni I, Bonini L, Gasparini P, et al. Hyperinsulinemia in a normal population as a predictor of non—insulin-dependent diabetes mellitus, hypertension, and coronary heart disease: The barilla factory revisited. Metabolism. 1999;48(8):989-994. doi: https://doi.org/10.1016/S0026-0495(99)90195-6
50. Mehran AE, Templeman NM, Brigidi GS, et al. Hyperinsulinemia drives diet-induced obesity independently of brain insulin production. Cell Metab. 2012;16(6):723-737. doi: https://doi.org/10.1016/j.cmet.2012.10.019
51. Ludwig DS, Friedman MI. Increasing adiposity: consequence or cause of overeating. JAMA. 2014;311(21):2167-2168. doi: https://doi.org/10.1001/jama.2014.4133
Supplementary files
|
1. Figure 1. The generally accepted model of obesity as an energy imbalance. Boxes contain parameters that can be measured quantitatively. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(230KB)
|
Indexing metadata ▾ |
|
2. Figure 2. Carbohydrate-insulin (endocrine) model of obesity. The box indicates the parameters that can be measured quantitatively. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(273KB)
|
Indexing metadata ▾ |
Review
For citations:
Martyushev-Poklad A.V., Yankevich D.S., Petrova M.V., Savitskaya N.G. Two models of insulin resistance development and the strategy to combat age-related diseases: literature review. Problems of Endocrinology. 2022;68(4):59-68. (In Russ.) https://doi.org/10.14341/probl13090

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).