Preview

Problems of Endocrinology

Advanced search

Dilated cardiomyopathy in a patient with Cushing’s disease — clinical Features, diagnosi asnd treatment: case Report

https://doi.org/10.14341/probl13147

Abstract

Cortisol-induced dilated cardiomyopathy (CI-DCM) is a rare manifestation of endogenous hypercortisolism (EH). Optimal management of patients with CI-DCM is a major challenge due to the rarity of the pathology and the lack of expert community guidelines. This article describes a case of successful management of a patient with ACTH-secreting pituitary tumor and CI-DCM.

A 44-year-old patient was hospitalized with symptoms of chronic heart failure (CHF) and EH. The diagnosis of non-ischemic myocardial damage with phenotype of DCM was verified by echocardiography and coronary angiography. According to hormonal and imaging tests, and selective blood sampling from the inferior petrosal sinuses, an ACTH-secreting pituitary adenoma was diagnosed. A transnasal transsphenoidal adenomectomy was planned. Due to the symptoms of CHF and systolo-diastolic dysfunction of the left ventricle (LV), significantly increasing the risk of adverse perioperative cardiac events, the intervention was postponed. Stabilization of the patient’s condition was achieved after 4-month therapy with use of betaAB, ACEI, MRA, diuretics, and steroidogenesis inhibitors. Stabilization of the patient’s condition allowed to perform transnasal transsphenoidal adenomectomy without perioperative complications, with postoperative decrease of ACTH and cortisol levels. Follow-up examinations demonstrated preservation of eucorticism, regression of CHF symptoms. progressive decrease of LV size/volumes with increase of LVEF.

Cortisol hypersecretion can damage myocardium with a phenotype of DCM, with symptoms of CHF being the dominant clinical manifestation of EH. The use of betaAB, ACEI, diuretics, MRA, and steroidogenesis inhibitors is reasonable to control symptoms of CHF and prepare a patient with CI-DCM for surgical intervention. After normalization of cortisol level, regression of CHF symptoms and significant reduction of heart chamber size/volumes with increase of LVEF are noted, which allows to conclude about reversibility of pathologic cardiac remodeling.

About the Authors

A. B. Kuznetsov
I.I. Dedov Endocrinology Research Centre
Russian Federation

Alexander B. Kuznetsov, MD, PhD

11 Dm. Ulyanova street, 117036 Moscow



A. Yа. Grigoryev
I.I. Dedov Endocrinology Research Centre
Russian Federation

Аndrey Yu. Grigoryev, MD, PhD, Professor

Moscow



V. A. Kuznetsov
Sechenov First Moscow State Medical University
Russian Federation

Vladimir A. Kuznetsov, Student

Moscow



Zh. E. Belaya
I.I. Dedov Endocrinology Research Centre
Russian Federation

Zhanna E. Belaya, MD, PhD, Professor

Moscow



L. Yа. Rozhinskaya
I.I. Dedov Endocrinology Research Centre
Russian Federation

Liudmila Ya. Rozhinskaya, MD, PhD, Professor

Moscow



References

1. Marchand L, Segrestin B, Lapoirie M, et al. Dilated Cardiomyopathy Revealing Cushing Disease: A Case Report and Literature Review. Medicine (Baltimore). 2015;94(46):e2011. doi: https://doi.org/10.1097/MD.0000000000002011

2. Miao S, Lu L, Li L, et al. Clinical Characteristics for the Improvement of Cushing’s Syndrome Complicated With Cardiomyopathy After Treatment With a Literature Review. Front Cardiovasc Med. 2021;8:777964. doi: https://doi.org/10.3389/fcvm.2021.777964

3. Riley DS, Barber MS, Kienle GS, et al. CARE guidelines for case reports: explanation and elaboration document. J Clin Epidemiol. 2017;89:218-235. doi: https://doi.org/10.1016/j.jclinepi.2017.04.026

4. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1-39.e14. doi: https://doi.org/10.1016/j.echo.2014.10.003

5. Nagueh SF, Smiseth OA, Appleton CP, et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2016;29(4):277-314. doi: https://doi.org/10.1016/j.echo.2016.01.011

6. PLOTZ CM, KNOWLTON AI, RAGAN C. The natural history of Cushing’s syndrome. Am J Med. 1952;13(5):597-614. doi: https://doi.org/10.1016/0002-9343(52)90027-2

7. Dekkers OM, Horváth-Puhó E, Jørgensen JO, et al. Multisystem morbidity and mortality in Cushing’s syndrome: a cohort study. J Clin Endocrinol Metab. 2013;98(6):2277-2284. doi: https://doi.org/10.1210/jc.2012-3582

8. Albiger N, Testa RM, Almoto B, et al. Patients with Cushing’s syndrome have increased intimal media thickness at different vascular levels: comparison with a population matched for similar cardiovascular risk factors. Horm Metab Res. 2006;38(6):405-410. doi: https://doi.org/10.1055/s-2006-944545

9. Faggiano A, Pivonello R, Spiezia S, et al. Cardiovascular risk factors and common carotid artery caliber and stiffness in patients with Cushing’s disease during active disease and 1 year after disease remission. J Clin Endocrinol Metab. 2003;88(6):2527-2533. doi: https://doi.org/10.1210/jc.2002-021558

10. Barahona MJ, Resmini E, Viladés D, et al. Coronary artery disease detected by multislice computed tomography in patients after long-term cure of Cushing’s syndrome. J Clin Endocrinol Metab. 2013;98(3):1093-1099. doi: https://doi.org/10.1210/jc.2012-3547

11. Neary NM, Booker OJ, Abel BS, et al. Hypercortisolism is associated with increased coronary arterial atherosclerosis: analysis of noninvasive coronary angiography using multidetector computerized tomography. J Clin Endocrinol Metab. 2013;98(5):2045-2052. doi: https://doi.org/10.1210/jc.2012-3754

12. Hersbach FM, Bravenboer B, Koolen JJ. Hearty hormones. Lancet. 2001;358(9280):468. doi: https://doi.org/10.1016/S0140-6736(01)05626-4

13. Chu JW, Matthias DF, Belanoff J, et al. Successful long-term treatment of refractory Cushing’s disease with high-dose mifepristone (RU 486). J Clin Endocrinol Metab. 2001;86(8):3568-3573. doi: https://doi.org/10.1210/jcem.86.8.7740

14. Marazuela M, Aguilar-Torres R, Benedicto A, Gómez-Pan A. Dilated cardiomyopathy as a presenting feature of Cushing’s syndrome. Int J Cardiol. 2003;88(2-3):331-333. doi: https://doi.org/10.1016/s0167-5273(02)00403-5

15. Petramala L, Battisti P, Lauri G, et al. Cushing’s syndrome patient who exhibited congestive heart failure. J Endocrinol Invest. 2007;30(6):525-528. doi: https://doi.org/10.1007/BF03346339

16. Ma RC, So WY, Tong PC, et al. Adiposity of the heart revisited: reversal of dilated cardiomyopathy in a patient with Cushing’s syndrome. Int J Cardiol. 2011;151(1):e22-e23. doi: https://doi.org/10.1016/j.ijcard.2010.04.041

17. Yong TY, Li JY. Reversible dilated cardiomyopathy in a patient with Cushing’s syndrome. Congest Heart Fail. 2010;16(2):77-79. doi: https://doi.org/10.1111/j.1751-7133.2009.00123.x

18. Al Banna R, Husain A, Al Aali J, et al. Reversible cushing dilated cardiomyopathy mimicking peripartum cardiomyopathy with successful subsequent pregnancy. BMJ Case Rep. 2011;2011:bcr0920114825. doi: https://doi.org/10.1136/bcr.09.2011.4825

19. J Johnston PC, Atkinson AB, Moore MJ, et al. An unusual cause of reversible cardiomyopathy. Ulster Med J. 2012;81(3):134-135

20. Shibusawa N, Yamada M, Hashida T, et al. Dilated cardiomyopathy as a presenting feature of Cushing’s syndrome. Intern Med. 2013;52(10):1067-1071. doi: https://doi.org/10.2169/internalmedicine.52.9051

21. Kim JH, Kim SY, Park JH. Dilated cardiomyopathy with left ventricular thrombi as a presenting feature of Cushing disease. Can J Cardiol. 2014;30(11):. doi: https://doi.org/10.1016/j.cjca.2014.06.018

22. Frustaci A, Letizia C, Verardo R, et al. Atrogin-1 Pathway Activation in Cushing Syndrome Cardiomyopathy. J Am Coll Cardiol. 2016;67(1):116-117. doi: https://doi.org/10.1016/j.jacc.2015.10.040

23. Sugihara N, Shimizu M, Kita Y, et al. Cardiac characteristics and postoperative courses in Cushing’s syndrome. Am J Cardiol. 1992;69(17):1475-1480. doi: https://doi.org/10.1016/0002-9149(92)90904-d

24. Bal MP, de Vries WB, Steendijk P, et al. Histopathological changes of the heart after neonatal dexamethasone treatment: studies in 4-, 8-, and 50-week-old rats. Pediatr Res. 2009;66(1):74-79. doi: https://doi.org/10.1203/PDR.0b013e3181a283a0

25. Roy SG, De P, Mukherjee D, et al. Excess of glucocorticoid induces cardiac dysfunction via activating angiotensin II pathway. Cell Physiol Biochem. 2009;24(1-2):1-10. doi: https://doi.org/10.1159/000227803

26. De P, Roy SG, Kar D, Bandyopadhyay A. Excess of glucocorticoid induces myocardial remodeling and alteration of calcium signaling in cardiomyocytes [published correction appears in J Endocrinol. 2011 May;209(2):255]. J Endocrinol. 2011;209(1):105-114. doi: https://doi.org/10.1530/JOE-10-0431

27. Ren R, Oakley RH, Cruz-Topete D, Cidlowski JA. Dual role for glucocorticoids in cardiomyocyte hypertrophy and apoptosis. Endocrinology. 2012;153(11):5346-5360. doi: https://doi.org/10.1210/en.2012-1563

28. Jin Z, Xia F, Dong J, et al. Omentin-1 attenuates glucocorticoid-induced cardiac injury by phosphorylating GSK3β. J Mol Endocrinol. 2021;66(4):273-283. doi: https://doi.org/10.1530/JME-20-0236

29. de Salvi Guimarães F, de Moraes WM, Bozi LH, et al. Dexamethasone-induced cardiac deterioration is associated with both calcium handling abnormalities and calcineurin signaling pathway activation. Mol Cell Biochem. 2017;424(1-2):87-98. doi: https://doi.org/10.1007/s11010-016-2846-3

30. Tanaka S, Shibuya H, Suzuki S, et al. Long-term administration of prednisolone: Effects on the myocardial tissue of healthy beagle dogs. J Vet Med Sci. 2021;83(1):84-93. doi: https://doi.org/10.1292/jvms.20-0401

31. Clark AF, DeMartino GN, Wildenthal K. Effects of glucocorticoid treatment on cardiac protein synthesis and degradation. Am J Physiol. 1986;250(6 Pt 1):C821-C827. doi: https://doi.org/10.1152/ajpcell.1986.250.6.C821

32. Czerwinski SM, Kurowski TT, McKee EE, et al. Myosin heavy chain turnover during cardiac mass changes by glucocorticoids. J Appl Physiol (1985). 1991;70(1):300-305. doi: https://doi.org/10.1152/jappl.1991.70.1.300

33. Clarke BA, Drujan D, Willis MS, et al. The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metab. 2007;6(5):376-385. doi: https://doi.org/10.1016/j.cmet.2007.09.009

34. Menconi M, Gonnella P, Petkova V, et al. Dexamethasone and corticosterone induce similar, but not identical, muscle wasting responses in cultured L6 and C2C12 myotubes. J Cell Biochem. 2008;105(2):353-364. doi: https://doi.org/10.1002/jcb.21833

35. Nishimura M, Mikura M, Hirasaka K, et al. Effects of dimethyl sulphoxide and dexamethasone on mRNA expression of myogenesis- and muscle proteolytic system-related genes in mouse myoblastic C2C12 cells. J Biochem. 2008;144(6):717-724. doi: https://doi.org/10.1093/jb/mvn126

36. Wang L, Luo GJ, Wang JJ, Hasselgren PO. Dexamethasone stimulates proteasome- and calcium-dependent proteolysis in cultured L6 myotubes. Shock. 1998;10(4):298-306. doi: https://doi.org/10.1097/00024382-199810000-00011

37. Wang R, Jiao H, Zhao J, et al. Glucocorticoids Enhance Muscle Proteolysis through a Myostatin-Dependent Pathway at the Early Stage. PLoS One. 2016;11(5):e0156225. doi: https://doi.org/10.1371/journal.pone.0156225

38. Wang XJ, Xiao JJ, Liu L, et al. Excessive glucocorticoid-induced muscle MuRF1 overexpression is independent of Akt/FoXO1 pathway. Biosci Rep. 2017;37(6):BSR20171056. doi: https://doi.org/10.1042/BSR20171056

39. Luan G, Li G, Ma X, et al. Dexamethasone-Induced Mitochondrial Dysfunction and Insulin Resistance-Study in 3T3-L1 Adipocytes and Mitochondria Isolated from Mouse Liver. Molecules. 2019;24(10):1982. doi: https://doi.org/10.3390/molecules24101982

40. Kokkinopoulou I, Moutsatsou P. Mitochondrial Glucocorticoid Receptors and Their Actions. Int J Mol Sci. 2021;22(11):6054. doi: https://doi.org/10.3390/ijms22116054

41. Funder JW. Mineralocorticoid receptor activation and oxidative stress. Hypertension. 2007;50(5):840-841. doi: https://doi.org/10.1161/HYPERTENSIONAHA.107.098012

42. Oakley RH, Cidlowski JA. Glucocorticoid signaling in the heart: A cardiomyocyte perspective. J Steroid Biochem Mol Biol. 2015;153:27-34. doi: https://doi.org/10.1016/j.jsbmb.2015.03.009

43. Hung CS (啟盛) 628401, Chang YY, Tsai CH, et al. Aldosterone suppresses cardiac mitochondria. Transl Res. 2022;239:58-70. doi: https://doi.org/10.1016/j.trsl.2021.08.003

44. Omori Y, Mano T, Ohtani T, et al. Glucocorticoids Induce Cardiac Fibrosis via Mineralocorticoid Receptor in Oxidative Stress: Contribution of Elongation Factor Eleven-Nineteen Lysine-Rich Leukemia (ELL). Yonago Acta Med. 2014;57(3):109-116


Supplementary files

Review

For citations:


Kuznetsov A.B., Grigoryev A.Y., Kuznetsov V.A., Belaya Zh.E., Rozhinskaya L.Y. Dilated cardiomyopathy in a patient with Cushing’s disease — clinical Features, diagnosi asnd treatment: case Report. Problems of Endocrinology. 2025;71(4):16-28. (In Russ.) https://doi.org/10.14341/probl13147

Views: 8


ISSN 0375-9660 (Print)
ISSN 2308-1430 (Online)