Preview

Problems of Endocrinology

Advanced search

Rare forms of hereditary endocrine neoplasia: co-existence of pituitary adenoma and pheochromocytoma/paraganglioma

https://doi.org/10.14341/probl13196

Abstract

Functioning pituitary adenomas and pheochromocytomas/paragangliomas are rare in the general population. Pituitary adenomas occur in the familial setting in approximately 5% of cases, whereas pheochromocytomas/paragangliomas can be hereditary in 30–40% of cases. Hereditary syndromes associated with pituitary adenomas include multiple endocrine neoplasia types 1 and 4, familial isolated pituitary adenomas, and Carney complex. Hereditary syndromes associated with pheochromocytomas/paragangliomas and genes, mutations in which predispose to their development, are more numerous. The first clinical descriptions of the co-occurrence of pituitary adenoma and pheochromocytoma/paraganglioma in one patient date back to the mid 20th century, however delineating such a co-occurrence into a particular syndrome («3PAs» (pituitary adenoma, pheochromocytoma, paraganglioma)) was suggested only in 2015. To date, approximately 100 cases of such a co-occurrence have been described in the literature. Mutations in genes encoding subunits of succinate dehydrogenase complex II (SDHx) are revealed in the majority of cases, much less common are mutations in MAX, MEN1 and some other genes. This review summarizes the current information on the «3PAs» syndrome.

About the Authors

E. O. Mamedova
Endocrinology Research Centre
Russian Federation

Elizaveta O. Mamedova, MD, PhD.

11 Dm. Ulyanova street, 117036 Moscow


Competing Interests:

none



D. V. Lisina
Endocrinology Research Centre
Russian Federation

Daria V. Lisina

Moscow


Competing Interests:

none



Zh. E. Belaya
Endocrinology Research Centre
Russian Federation

Zhanna E. Belaya - MD, PhD.

Moscow


Competing Interests:

none



References

1. Chanson P, Maiter D. The epidemiology, diagnosis and treatment of prolactinomas: The old and the new. Best Pract Res Clin Endocrinol Metab. 2019;33(2):101290. doi: https://doi.org/10.1016/j.beem.2019.101290

2. Holdaway IM, Rajasoorya C. Epidemiology of acromegaly. Pituitary. 1999;2(1):29-41. doi: https://doi.org/10.1023/a:1009965803750

3. Etxabe J, Vazquez JA. Morbidity and mortality in Cushing’s disease: an epidemiological approach. Clin Endocrinol (Oxf). 1994;40(4):479-484. doi: https://doi.org/10.1111/j.1365-2265.1994.tb02486.x

4. Ebbehoj A, Stochholm K, Jacobsen SF, et al. Incidence and clinical presentation of pheochromocytoma and sympathetic paraganglioma: a population-based study. J Clin Endocrinol Metab. 2021;106(5):e2251-e2261. doi: https://doi.org/10.1210/clinem/dgaa965

5. Vasilev V, Daly AF, Zacharieva S, Beckers A. Clinical and molecular update on genetic causes of pituitary adenomas. Horm Metab Res. 2020;52(8):553-561. doi: https://doi.org/10.1055/a-1143-5930

6. Mamedova EO, Przhiyalkovskaya EG, Pigarova EA, et al. Pituitary adenomas in the framework of hereditary syndromes. Problems of Endocrinology. 2014;60(4):51-59. (In Russ.). doi: https://doi.org/10.14341/probl201460438-46

7. Comino-Méndez I, Gracia-Aznárez FJ, Schiavi F, et al. Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma. Nat Genet. 2011;43(7):663-667. doi: https://doi.org/10.1038/ng.861

8. O’Toole SM, Dénes J, Robledo M, et al. 15 Years of paraganglioma: The association of pituitary adenomas and phaeochromocytomas or paragangliomas. Endocr Relat Cancer. 2015;22(4):T105-T122. doi: https://doi.org/10.1530/ERC-15-0241

9. Buffet A, Burnichon N, Favier J, Gimenez-Roqueplo AP. An overview of 20 years of genetic studies in pheochromocytoma and paraganglioma. Best Pract Res Clin Endocrinol Metab. 2020;34(2):101416. doi: https://doi.org/10.1016/j.beem.2020.101416

10. Xekouki P, Brennand A, Whitelaw B, et al. The 3PAs: An update on the association of pheochromocytomas, paragangliomas, and pituitary tumors. Horm Metab Res. 2019;51(7):419-436. doi: https://doi.org/10.1055/a-0661-0341

11. Iversen K. Acromegaly associated with phaeochromocytoma. Acta Med Scand. 1952;142(1):1-5. doi: https://doi.org/10.1111/j.0954-6820.1952.tb13837.x

12. López-Jiménez E, de Campos JM, Kusak EM, et al. SDHC mutation in an elderly patient without familial antecedents. Clin Endocrinol (Oxf). 2008;69(6):906-910. doi: https://doi.org/10.1111/j.1365-2265.2008.03368.x

13. Xekouki P, Pacak K, Almeida M, et al. Succinate dehydrogenase (SDH) D subunit (SDHD) inactivation in a growth-hormone-producing pituitary tumor: a new association for SDH? J Clin Endocrinol Metab. 2012;97(3):E357-E366. doi: https://doi.org/10.1210/jc.2011-1179

14. Dénes J, Swords F, Rattenberry E, et al. Heterogeneous genetic background of the association of pheochromocytoma/paraganglioma and pituitary adenoma: results from a large patient cohort. J Clin Endocrinol Metab. 2015;100(3):E531-E541. doi: https://doi.org/10.1210/jc.2014-3399

15. Xekouki P, Szarek E, Bullova P, et al. Pituitary adenoma with paraganglioma/pheochromocytoma (3PAs) and succinate dehydrogenase defects in humans and mice. J Clin Endocrinol Metab. 2015;100(5):E710-E719. doi: https://doi.org/10.1210/jc.2014-4297

16. Moreno C, Santos RM, Burns R, Zhang WC. Succinate dehydrogenase and ribonucleic acid networks in cancer and other diseases. Cancers (Basel). 2020;12(11):3237. doi: https://doi.org/10.3390/cancers12113237

17. Baysal BE, Lawrence EC, Ferrell RE. Sequence variation in human succinate dehydrogenase genes: evidence for long-term balancing selection on SDHA. BMC Biol. 2007;5(1):12. doi: https://doi.org/10.1186/1741-7007-5-12

18. Burnichon N, Brière JJ, Libé R, et al. SDHA is a tumor suppressor gene causing paraganglioma. Hum Mol Genet. 2010;19(15):3011-3020. doi: https://doi.org/10.1093/hmg/ddq206

19. van der Tuin K, Mensenkamp AR, Tops CMJ, et al. Clinical aspects of SDHA-related pheochromocytoma and paraganglioma: A nationwide study. J Clin Endocrinol Metab. 2018;103(2):438-445. doi: https://doi.org/10.1210/jc.2017-01762

20. Dwight T, Mann K, Benn DE, et al. Familial SDHA mutation associated with pituitary adenoma and pheochromocytoma/paraganglioma. J Clin Endocrinol Metab. 2013;98(6):E1103-E1108. doi:10.1210/jc.2013-1400

21. Au HC, Ream-Robinson D, Bellew LA, et al. Structural organization of the gene encoding the human iron-sulfur subunit of succinate dehydrogenase. Gene. 1995;159(2):249-253. doi: https://doi.org/10.1016/0378-1119(95)00162-y

22. Astuti D, Latif F, Dallol A, et al. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma [published correction appears in Am J Hum Genet 2002;70(2):565]. Am J Hum Genet. 2001;69(1):49-54. doi: https://doi.org/10.1086/321282

23. Gimenez-Roqueplo AP, Favier J, Rustin P, et al. Mutations in the SDHB gene are associated with extra-adrenal and/or malignant phaeochromocytomas. Cancer Res. 2003;63(17):5615-5621.

24. Gorospe L, Cabañero-Sánchez A, Muñoz-Molina GM, et al. An unusual case of mediastinal paraganglioma and pituitary adenoma. Surgery. 2017;162(6):1338-1339. doi: https://doi.org/10.1016/j.surg.2017.03.003

25. Efstathiadou ZA, Sapranidis M, Anagnostis P, Kita MD. Unusual case of Cowden-like syndrome, neck paraganglioma, and pituitary adenoma. Head Neck. 2014;36(1):E12-E16. doi: https://doi.org/10.1002/hed.23420

26. Guerrero-Pérez F, Lisbona Gil A, Robledo M, et al. Pituitary adenoma associated with pheochromocytoma/paraganglioma: A new form of multiple endocrine neoplasia. Adenoma hipofisario asociado a feocromocitoma/paraganglioma: una nueva forma de neoplasia endocrina múltiple. Endocrinol Nutr. 2016;63(9):506-508. doi: https://doi.org/10.1016/j.endonu.2016.07.007

27. Saavedra A, Lima J, Castro L, et al. Malignant paraganglioma and somatotropinoma in a patient with germline SDHB mutation-genetic and clinical features. Endocrine. 2019;63(1):182-187. doi: https://doi.org/10.1007/s12020-018-1726-x

28. Benn DE, Gimenez-Roqueplo AP, Reilly JR, et al. Clinical presentation and penetrance of pheochromocytoma/paraganglioma syndromes. J Clin Endocrinol Metab. 2006;91(3):827-836. doi: https://doi.org/10.1210/jc.2005-1862

29. Maher M, Roncaroli F, Mendoza N, et al. A patient with a germline SDHB mutation presenting with an isolated pituitary macroprolactinoma. Endocrinol Diabetes Metab Case Rep. 2018;2018:18-0078. doi: https://doi.org/10.1530/EDM-18-0078

30. Guerrero-Pérez F, Fajardo C, Torres Vela E, et al. 3P association (3PAs): Pituitary adenoma and pheochromocytoma/paraganglioma. A heterogeneous clinical syndrome associated with different gene mutations. Eur J Intern Med. 2019;(69):14-19. doi: https://doi.org/10.1016/j.ejim.2019.08.005

31. Tufton N, Roncaroli F, Hadjidemetriou I, et al. Pituitary carcinoma in a patient with an SDHB mutation. Endocr Pathol. 2017;28(4):320-325. doi: https://doi.org/10.1007/s12022-017-9474-7

32. Niemann S, Steinberger D, Müller U. PGL3, a third, not maternally imprinted locus in autosomal dominant paraganglioma. Neurogenetics. 1999;2(3):167-170. doi: https://doi.org/10.1007/s100480050078

33. Niemann S, Müller U. Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat Genet. 2000;26(3):268-270. doi: https://doi.org/10.1038/81551

34. Baysal BE, Ferrell RE, Willett-Brozick JE, et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science. 2000;287(5454):848-851. doi: https://doi.org/10.1126/science.287.5454.848

35. Papathomas TG, Gaal J, Corssmit EP, et al. Non-pheochromocytoma (PCC)/paraganglioma (PGL) tumors in patients with succinate dehydrogenase-related PCC-PGL syndromes: a clinicopathological and molecular analysis. Eur J Endocrinol. 2013;170(1):1-12. doi: https://doi.org/10.1530/EJE-13-0623

36. Varsavsky M, Sebastián-Ochoa A, Torres Vela E. Coexistence of a pituitary macroadenoma and multicentric paraganglioma: a strange coincidence. Endocrinol Nutr. 2013;60(3):154-156. doi: https://doi.org/10.1016/j.endonu.2012.02.009

37. Xekouki P, Stratakis CA. Succinate dehydrogenase (SDHx) mutations in pituitary tumors: could this be a new role for mitochondrial complex II and/or Krebs cycle defects? Endocr Relat Cancer. 2012;19(6):C33-C40. doi: https://doi.org/10.1530/ERC-12-0118

38. Lemelin A, Lapoirie M, Abeillon J, et al. Pheochromocytoma, paragangliomas, and pituitary adenoma: An unusual association in a patient with an SDHD mutation. Case report. Medicine (Baltimore). 2019;98(30):e16594. doi: https://doi.org/10.1097/MD.0000000000016594

39. Hao HX, Khalimonchuk O, Schraders M, et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science. 2009;325(5944):1139-1142. doi: https://doi.org/10.1126/science.1175689

40. Jhawar S, Arakawa Y, Kumar S, et al. New insights on the genetics of pheochromocytoma and paraganglioma and its clinical implications. Cancers (Basel). 2022;14(3):594. doi: https://doi.org/10.3390/cancers14030594

41. Gill AJ, Toon CW, Clarkson A, et al. Succinate dehydrogenase deficiency is rare in pituitary adenomas. Am J Surg Pathol. 2014;38(4):560-566. doi: https://doi.org/10.1097/PAS.0000000000000149

42. Burnichon N, Cascón A, Schiavi F, et al. MAX mutations cause hereditary and sporadic pheochromocytoma and paraganglioma. Clin Cancer Res. 2012;18(10):2828-2837. doi: https://doi.org/10.1158/1078-0432.CCR-12-0160

43. Roszko KL, Blouch E, Blake M, et al. Case report of a prolactinoma in a patient with a novel MAX mutation and bilateral pheochromocytomas. J Endocr Soc. 2017;1(11):1401-1407. doi: https://doi.org/10.1210/js.2017-00135

44. Daly AF, Castermans E, Oudijk L, et al. Pheochromocytomas and pituitary adenomas in three patients with MAX exon deletions. Endocr Relat Cancer. 2018;25(5):L37-L42. doi: https://doi.org/10.1530/ERC-18-0065

45. Petignot S, Daly AF, Castermans E, et al. Pancreatic Neuroendocrine Neoplasm Associated with a Familial MAX Deletion. Horm Metab Res. 2020;52(11):784-787. doi: https://doi.org/10.1055/a-1186-0790

46. Kobza AO, Dizon S, Arnaout A. Case report of bilateral pheochromocytomas due to a novel MAX mutation in a patient known to have a pituitary prolactinoma. AACE Clin Case Rep. 2018;4(6):e453-456. doi: https://doi.org/10.4158/ACCR- 2018-0146

47. Seabrook AJ, Harris JE, Velosa SB, et al. Multiple endocrine tumors associated with germline MAX mutations: multiple endocrine neoplasia type 5? J Clin Endocrinol Metab. 2021;106(4):1163-1182. doi: https://doi.org/10.1210/clinem/dgaa957

48. Mamedova E, Vasilyev E, Petrov V, et al. Familial acromegaly and bilateral asynchronous pheochromocytomas in a female patient with a MAX mutation: A case report. Front Endocrinol (Lausanne). 2021;(12):14-19. doi: https://doi.org/10.3389/fendo.2021.683492

49. Thakker RV, Newey PJ, Walls GV, et al. Clinical practice guidelines for multiple endocrine neoplasia type 1 (MEN1). J Clin Endocrinol Metab. 2012;97(9):2990-3011. doi: https://doi.org/10.1210/jc.2012-1230

50. van Treijen MJC, de Vries LH, Hertog D, et al. Multiple endocrine neoplasia type 2. In: Feingold KR, Anawalt B, Boyce A, et al., eds. Endotext. South Dartmouth (MA): MDText. com, Inc.; 2022.

51. Heinlen JE, Buethe DD, Culkin DJ, Slobodov G. Multiple endocrine neoplasia 2a presenting with pheochromocytoma and pituitary macroadenoma. ISRN Oncol. 2011;2011:1-4. doi: https://doi.org/10.5402/2011/732452

52. Naziat A, Karavitaki N, Thakker R, et al. Confusing genes: a patient with MEN2A and Cushing’s disease. Clin Endocrinol (Oxf). 2013;78(6):966-968. doi: https://doi.org/10.1111/cen.12072

53. Saito T, Miura D, Taguchi M, et al. Coincidence of multiple endocrine neoplasia type 2A with acromegaly. Am J Med Sci. 2010;340(4):329-331. doi: https://doi.org/10.1097/MAJ.0b013e3181e73fba

54. Lonser RR, Glenn GM, Walther M, et al. Von Hippel-Lindau disease. Lancet. 2003;361(9374):2059-2067. doi: https://doi.org/10.1016/S0140-6736(03)13643-4

55. Tudorancea A, François P, Trouillas J, et al. Von Hippel-Lindau disease and aggressive GH-PRL pituitary adenoma in a young boy. Ann Endocrinol (Paris). 2012;73(1):37-42. doi: https://doi.org/10.1016/j.ando.2011.12.001

56. Stütz B, Korbonits M, Kothbauer K, et al. Identification of a TMEM127 variant in a patient with paraganglioma and acromegaly. Endocrinol Diabetes Metab Case Reports. 2020;2020:1-4. doi: https://doi.org/10.1530/EDM-20-0119

57. Dahia PL, Hao K, Rogus J, et al. Novel pheochromocytoma susceptibility loci identified by integrative genomics. Cancer Res. 2005;65(21):9651-9658. doi: https://doi.org/10.1158/0008-5472.CAN-05-1427

58. MacFarlane J, Seong KC, Bisambar C, et al. A review of the tumour spectrum of germline succinate dehydrogenase gene mutations: Beyond phaeochromocytoma and paraganglioma. Clin Endocrinol (Oxf). 2020;93(5):528-538. doi: https://doi.org/10.1111/cen.14289

59. Galan SR, Kann PH. Genetics and molecular pathogenesis of pheochromocytoma and paraganglioma. Clin Endocrinol (Oxf). 2013;78(2):165-175. doi: https://doi.org/10.1111/cen.12071


Supplementary files

Review

For citations:


Mamedova E.O., Lisina D.V., Belaya Zh.E. Rare forms of hereditary endocrine neoplasia: co-existence of pituitary adenoma and pheochromocytoma/paraganglioma. Problems of Endocrinology. 2023;69(2):24-30. (In Russ.) https://doi.org/10.14341/probl13196

Views: 1190


ISSN 0375-9660 (Print)
ISSN 2308-1430 (Online)