Search for new immunohistochemical and circulating markers of insulinoma
https://doi.org/10.14341/probl13466
Abstract
BACKGROUND: Insulinoma is a neuroendocrine tumor, the main manifestation of which is hypoglycemia. However, the symptoms of hypoglycemia can be non-specific for a long time, especially outside provocative conditions, and quite often the tumor manifests from a life-threatening condition — hypoglycemic coma. In this regard, timely laboratory diagnosis of insulinoma and determination of its aggressive course is one of the priorities in modern researches.
AIM: Search for new immunohistochemical (IHC) and circulating markers (CM) of insulinoma, including its aggressive course.
MATERIALS AND METHODS: The patients examined at the Endocrinology Research Centre in the period 2017–2022 and operated on for an insulin-producing tumor were included. Before surgery and 2–12 months after it, blood sampling was performed with the determination of targeted marker proteins. Some patients underwent an extended IHC examination of the tumor, surrounding tissue and islets of Langerhans with primary antibodies to target marker proteins with an assessment of the degree of their expression. To determine the aggressive course of the tumor, the degree of malignancy (Grade), the number of tumors and signs of recurrence were characterized.
RESULTS: Based on the analysis of literature and pathogenetic characteristics of insulinoma, the following candidates for targeted marker proteins were selected: cocaine and amphetamine-regulated transcript (CART), chromogranin B (CrB), neuroendocrine secretory protein 55 (NESP55), glucagon-like peptide 1 (GLP1), arylalkylamine-N-acetyltransferase (AA-NAT), melatonin, and, exclusively for IHC research, protein D52 (TPD52), as well as receptors for glucagon-like peptide-1 (rGLP1) and melatonin (MTNR1b). 41 patients were included in the study, of which 10 patients underwent an extended IHC study. In patients with both aggressive and non-aggressive insulinoma after surgical treatment, CM levels did not change significantly and in individual patients they could both increase and decrease, including those patients with the expression of the corresponding marker in tumor tissue. It was shown that CART was expressed only in the tumor (in 4/10 of cases), while MTNR1b and rGLP1 were expressed in the tumor (in 6/10 and 10/10, respectively) and the islets of Langerhans (in 5/9 and 9/9, respectively). The association of marker expression with the aggressiveness of the course of insulinoma has not been revealed.
CONCLUSION. The markers CART, MTNR1b and rGLP1 are of primary interest for further study in a larger sample of patients with insulinoma. Other markers (TPD52, XgB, NESP55, melatonin, AA-NAT) have not been shown to be associated with an insulin-producing tumor, therefore they are not promising for future researches. At the same time, it is necessary to continue research aimed at finding new both circulating and IHC markers in order to early diagnose the manifestation of the disease and its recurrence, and more accurately determine the malignant and proliferative potential of the tumor.
About the Authors
M. Yu. YukinaRussian Federation
Marina Yu. Yukina, MD, PhD
11, Dm. Ulyanova street, 117292 Moscow
E. A. Troshina
Russian Federation
Ekaterina A. Troshina, MD, PhD, Professor
Moscow
L. S. Urusova
Russian Federation
Liliya S. Urusova, MD, PhD
Moscow
N. F. Nuralieva
Russian Federation
Nurana F. Nuralieva, MD, PhD
Moscow
L. V. Nikankina
Russian Federation
Larisa V. Nikankina, MD, PhD
Moscow
V. A. Ioutsi
Russian Federation
Vitaliy A. Ioutsi, PhD
Moscow
O. Yu. Rebrova
Russian Federation
Olga Yu. Rebrova, MD, PhD
Moscow
N. G. Mokrysheva
Russian Federation
Natalia G. Mokrysheva, MD, PhD, Professor
Moscow
References
1. Khacimova L.S., Karonova T.L., Tsoy U.A., Ianevskaia L.G., Grineva E.N. Insulinoma: diagnostic features and treatment management. Problems of Endocrinology. 2017;63(4):212-218. doi: https://doi.org/10.14341/probl2017634212-218
2. Krivko A.A., Remizov O.V., Soldatova T.V., Leites Yu.G. Features of topical diagnostics of insulinomas. Consilium Medicum. 2014; 16 (4): 54–55
3. Chang L, Bi X, Li S, et al. The comparison of three different molecular imaging methods in localization and grading of insulinoma. Front Endocrinol (Lausanne). 2023:14:1163176. doi: https://doi.org/10.3389/fendo.2023.1163176
4. Mo S, Wang Y, Wu W, et al. Identifying target ion channel-related genes to construct a diagnosis model for insulinoma. Front Genet. 2023:14:1181307. doi: https://doi.org/10.3389/fgene.2023.1181307
5. Ardill JES, O’Dorisio TM. Circulaing biomarkers in neuroendocrine tumors of the enteropancreatic tract: application to diagnosis, monitoring disease, and as prognostic indicators. Endocrinol Metab Clin N Am. 2010;39(4):777–790. doi: https://doi.org/10.1016/j.ecl.2010.09.001
6. Bech P, Winstanley V, Murphy KG, et al. Elevated cocaineand amphetamine-regulated transcript immunoreactivity in the circulation of patients with neuroendocrine malignancy. J Clin Endocrinol Metab. 2008;93(4):1246–1253. doi: https://doi.org/10.1210/jc.2007-1946
7. Ramachandran R, Bech P, Murphy KG, et al. Comparison of the utility of cocaine- and amphetamine-regulated transcript (CART), chromogranin A, and chromogranin B in neuroendocrine tumor diagnosis and assessment of disease progression. J Clin Endocrinol Metab. 2016;100(4):1520–1528. doi: https://doi.org/10.1210/jc.2014-3640
8. Jensen PB, Kristensen P, Clausen JT, et al. The hypothalamic satiety peptide CART is expressed in anorectic and nonanorectic pancreatic islet tumors and in the normal islet of Langerhans. FEBS Lett. 1999;447(2–3):139–143. doi: https://doi.org/10.1016/s0014-5793(99)00291-4.
9. Abels M, Riva M, Shcherbina L, et al. Overexpressed beta cell CART increases insulin secretion in mouse models of insulin resistance and diabetes. Peptides. 2022:151:170747. doi: https://doi.org/10.1016/j.peptides.2022.170747
10. Wierup N, Sundler F. CART is a novel islet regulatory peptide. Peptides. 2006;27(8):2031–2036. doi: https://doi.org/10.1016/j.peptides.2006.02.011
11. Bargsten G. Cytological and immunocytochemical characterization of the insulin secreting insulinoma cell line RINm5F. Arch Histol Cytol. 2004;67(1):79–94. doi: https://doi.org/10.1679/aohc.67.79
12. Ángel J, Pérez D, Freixes MC. Chromogranin A and neuroendocrine tumors. Endocrinol Nutr. 2013;60(7):386–395. doi: https://doi.org/10.1016/j.endonu.2012.10.003
13. Lyubimova N.V., Timofeev Yu.S., Lebedeva A.V., Kushlinsky N.E. Chromogranin A and chromogranin B in pancreatic neuroendocrine tumors. Medical alphabet. 2020;(8):26-28. (In Russ.) https://doi.org/10.33667/2078-5631-2020-8-26-28
14. Lyubimova N.V., Timofeev Yu.S., Lebedeva A.V., Kushlinskii N.E. Comparative assay of chromogranin A and chromogranin B in patients with pancreatic and gastric neuroendocrine tumors. Uspekhi molekulyarnoy onkologii = Advances in Molecular Oncology 2021;8(3):8–13. (In Russ.). doi: 10.17650/2313-805X-2021-8-3-8-13.
15. Gurevich LE, Kazantseva IA. Current approaches to the morphological diagnosis of pancreatic neuroendocrine tumors and prediction of their clinical course based on the analysis of our own database. Almanac of Clinical Medicine. 2018;46(4):298–313. doi: 10.18786/2072-0505-2018-46-4-298-313.
16. Alkatout I, Friemel J, Sitek B, et al. Novel prognostic markers revealed by a proteomic approach separating benign from malignant insulinomas. Mod Pathol. 2015;28(1):69–79. doi: https://doi.org/10.1038/modpathol.2014.82
17. Waser B, Blank A, Karamitopoulou E, et al. Glucagon-likepeptide-1 receptor expression in normal and diseased human thyroid and pancreas. Mod Pathol. 2015;28(3):391–402. doi: https://doi.org/10.1038/modpathol.2014.113
18. Korner M. Specific biology of neuroendocrine tumors: peptide receptors as molecular targets. Best Pract Res Clin Endocrinol Metab. 2016;30(1):19–31. doi: https://doi.org/10.1016/j.beem.2016.01.001
19. Vesterinen T, Peltola E, Leijon H, Hannula P, Huhtala H, et al. Immunohistochemical Glucagon-like Peptide-1 Receptor Expression in Human Insulinomas. Int. J. Mol. Sci. 2023;24:15164. doi: https://doi.org/10.3390/ijms242015164
20. Wang Z, You J, Xu S, et al. Colocalization of insulin and glucagon in insulinoma cells and developing pancreatic endocrine cells. Biochem. Biophys. Res. Commun. 2015;461:598–604. doi: https://doi.org/10.1016/j.bbrc.2015.04.072
21. Jung E-M, Joo S-S, Yoo Y-M. Nanomolar melatonin influences insulin synthesis and secretion in rat insulinoma INS-1E cells. J Physiol Pharmacol. 2020;71(5). doi: https://doi.org/10.26402/jpp.2020.5.10
22. Mühlbauer E, Albrecht E, Bazwinsky-Wutschke I, Peschke E. Melatonin influences insulin secretion primarily via MT(1) receptors in rat insulinoma cells (INS-1) and mouse pancreatic islets. J Pineal Res. 2012;52(4):446–459. doi: https://doi.org/10.1111/j.1600-079X.2012.00959.x
23. Li Y, Wu H, Liu N, et al. Melatonin exerts an inhibitory effect on insulin gene transcription via MTNR1B and the downstream Raf-1/ERK signaling pathway. Int J Mol Med. 2018;41(2):955–961. doi: https://doi.org/10.3892/ijmm.2017.3305
24. Peschke E, Mühlbauer E. New evidence for a role of melatonin in glucose regulation. Best Pract Res ClinEndocrinolMetab. 2016;24(5):829–841. doi: https://doi.org/10.1016/j.beem.2010.09.001
25. Peschke E, Bähr I, Mühlbauer E. Melatonin and pancreatic islets: interrelationships between melatonin, insulin and glucagon. Int J Mol Sci. 2013;14(4):6981–7015. doi: https://doi.org/10.3390/ijms14046981
26. Cavalcanti MS, Gönen M, Klimstra DS. The ENETS/WHO grading system for neuroendocrine neoplasms of the gastroenteropancreatic system: a review of the current state, limitations and proposals for modifications. Int J Endoc rOncol. 2016;3(3):203-219. doi: https://doi.org/10.2217/ije-2016-0006
27. American joint committee on cancer. AJCC cancer staging manual. Seventh Edition. Springer. 2010
28. Iglesias P, Lafuente C, Almendra MÁM, et al. Insulinoma: a multicenter, retrospective analysis of three decades of experience (1983-2014). Endocrinol Nutr. 2015;62(7):306-13. doi: https://doi.org/10.1016/j.endonu.2015.04.004
29. Crippa S, Zerbi A, Boninsegna L, et al. Surgical management of insulinomas: short- and long-term outcomes after enucleations and pancreatic resections. Arch Surg. 2012;147(3):261-6. doi: https://doi.org/10.1001/archsurg.2011.1843
30. Wu H, Zhao D, Mei M, Chen J. Expression and significance of Ki-67 in insulinoma. Chinese Journal of Gastroenterology. 2008;13(4):209-212
31. Hasanov R, Samadov E, Bayramov N, et al. Surgical management of insulinomas at the Azerbaijan Medical University: a retrospective study of 21 cases over a 10-year period. Turk J Med Sci. 2020;50(5):1262-1269. doi: https://doi.org/10.3906/sag-2001-150
32. Abels M, Riva M, Bennet H, et al. CART is overexpressed in human type 2 diabetic islets and inhibits glucagon secretion and increases insulin secretion. Diabetologia. 2016;59(9):1928-37. doi: https://doi.org/10.1007/s00125-016-4020-6
33. Bearrows SC, Bauchle CJ, Becker M, Haldeman JM, Swaminathan S, Stephens SB. Chromogranin B regulates early-stage insulin granule trafficking from the Golgi in pancreatic islet β-cells. J CellSci. 2019;132(13):jcs231373. doi: https://doi.org/10.1242/jcs.231373
34. Lukinius A, Stridsberg M, Wilander E. Cellular expression and specific intragranular localization of chromogranin A, chromogranin B, and synaptophysin during ontogeny of pancreatic islet cells: an ultrastructural study. Pancreas. 2003;27(1):38-46. doi: https://doi.org/10.1097/00006676-200307000-00006
35. Sekiya K, Ghatei MA, Salahuddin MJ, et al. Production of GAWK (chromogranin-B 420-493)-like immunoreactivity by endocrine tumors and its possible diagnostic value. J Clin Invest. 1989;83(6):1834-42. doi: https://doi.org/10.1172/JCI114089
36. Kimura N, Pilichowska M, Okamoto H, Kimura I, Aunis D. Immunohistochemical expression of chromogranins A and B, prohormone convertases 2 and 3, and amidatingenzyme in carcinoid tumors and pancreatic endocrine tumors. Mod Pathol. 2000;13(2):140-6. doi: https://doi.org/10.1038/modpathol.3880026
37. Maffei A, Liu Z, Witkowski P, et al. Identification of tissue-restricted transcripts in human islets. Endocrinology. 2004;145(10):4513-21. doi: https://doi.org/10.1210/en.2004-0691
38. Jakobsen AM, Ahlman H, Ko L. NESP55, a novel chromograninlike peptide, is expressed in endocrine tumours of the pancreas and adrenal medulla but not in ileal carcinoids. Br J Cancer. 2003;88(11):1746–1754. doi: https://doi.org/10.1038/sj.bjc.6600924
39. Jansen TJP, van Lith SAM, Boss M, et al. Exendin-4 analogs in insulinoma theranostics. J Labelled Comp Radiopharm. 2019;62(10):656-672. doi: https://doi.org/10.1002/jlcr.3750
40. Sidrak MMA, Maria De Feo S, Corica F, et al. Role of Exendin-4 Functional Imaging in Diagnosis of Insulinoma: A Systematic Review. Life (Basel). 2023;13(4):989. doi: https://doi.org/10.3390/life13040989
41. Parihar AS, Vadi SK, Kumar R, et al. 68Ga DOTA-Exendin PET/CT for Detection of Insulinoma in a Patient With Persistent Hyperinsulinemic Hypoglycemia. Clin Nucl Med. 2018;43(8):e285-e286. doi: https://doi.org/10.1097/RLU.0000000000002155
42. Antwi K, Nicolas G, Fani M, et al. 68Ga-Exendin-4 PET/CT Detects Insulinomas in Patients With Endogenous Hyperinsulinemic Hypoglycemia in MEN-1. J Clin Endocrinol Metab. 2019;104(12):5843-5852. doi: https://doi.org/10.1210/jc.2018-02754
43. Campbell SA, Johnson J, Light PE. Evidence for the existence and potential roles of intra-islet glucagon-like peptide-1. Islets. 2021;13(1-2):32-50. doi: https://doi.org/10.1080/19382014.2021.1889941
44. Michalski K, Laubner K, Stoykow C, et al. Detection of Insulinomas Using Dual-Time-Point 68Ga-DOTAExendin 4 PET/CT. Clin Nucl Med. 2020;45(7):519-524. doi: https://doi.org/10.1097/RLU.0000000000003093
45. Luo Y, Chen X. Imaging of Insulinoma by Targeting Glucagonlike Peptide-1 Receptor. PET Clin. 2021;16(2):205-217. doi: https://doi.org/10.1016/j.cpet.2020.12.008
46. Mulder Н, Nagorny CLF, Lyssenko V, Groop L. Melatonin receptors in pancreatic islets: good morning to a novel type 2 diabetes gene. Diabetologia. 2009;52(7):1240-9. doi: https://doi.org/10.1007/s00125-009-1359-y
Supplementary files
|
1. Figure 1. Timing of relapse in the study group of 41 patients (Kaplan-Meier curve) | |
Subject | ||
Type | Исследовательские инструменты | |
View
(315KB)
|
Indexing metadata ▾ |
|
2. Figure 2. Expression of the CART marker in the tumor (1 point) | |
Subject | ||
Type | Исследовательские инструменты | |
View
(719KB)
|
Indexing metadata ▾ |
|
3. Figure 3. Expression of the MTNR1b marker in the tumor (1 point). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(1MB)
|
Indexing metadata ▾ |
|
4. Figure 4. Expression of the rGLP1 marker in the tumor (3 points) | |
Subject | ||
Type | Исследовательские инструменты | |
View
(1MB)
|
Indexing metadata ▾ |
Review
For citations:
Yukina M.Yu., Troshina E.A., Urusova L.S., Nuralieva N.F., Nikankina L.V., Ioutsi V.A., Rebrova O.Yu., Mokrysheva N.G. Search for new immunohistochemical and circulating markers of insulinoma. Problems of Endocrinology. 2024;70(6):15-26. (In Russ.) https://doi.org/10.14341/probl13466

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).