Preview

Problems of Endocrinology

Advanced search

Factors and conditions affecting transcortin production and function in blood plasma

https://doi.org/10.14341/probl13483

Abstract

It is well-established that the majority of steroid hormones in the bloodstream are in a bound state, complexed with carrier proteins. Transcortin (corticosteroid-binding globulin, SERPINA6) serves as the principal transport protein for steroid hormones and is predominantly synthesized in the liver. Its primary function is to regulate the systemic bioavailability of glucocorticoids and mineralocorticoids. This review article presents an analysis of the existing literature on the impact of various factors and conditions on Transcortin, encompassing its synthesis, secretion, and affinity, as well as its role in physiological and pathophysiological processes within the human body. A reduction in Transcortin levels has been observed in several contexts, including old age, obesity, and metabolic syndrome. Additionally, this decrease is evident in the presence of cirrhosis, sepsis, polytrauma, extensive burns, and during surgical interventions. The concentration of Transcortin in the bloodstream can be influenced by a variety of medications. For instance, estrogen therapy, such as combined oral contraceptives, has been shown to induce a significant increase in Transcortin levels. Conversely, the administration of glucocorticoids has been associated with a decrease in Transcortin levels. Furthermore, this review article includes an analysis of studies that have investigated the influence of Transcortin and alterations in its blood levels in the context of endogenous hypercortisolism. These studies contribute to a deeper understanding of the complex interplay between Transcortin and steroid hormone regulation in various physiological and pathological conditions.

About the Authors

A. Chevais
I.I. Dedov Endocrinology Research Centre
Russian Federation

Anastassia Chevais, MD

Moscow



D. G. Beltsevich
I.I. Dedov Endocrinology Research Centre
Russian Federation

Dmitry G. Beltsevich, MD, PhD

Moscow



K. Sh. Gadzhieva
I.I. Dedov Endocrinology Research Centre
Russian Federation

Kamila Sh. Gadzhieva

11 Dm. Ulyanova street, 117036, Moscow



H. V. Bagirova
I.I. Dedov Endocrinology Research Centre
Russian Federation

Hanum V. Bagirova

Moscow



A. K. Ebzeeva
I.I. Dedov Endocrinology Research Centre
Russian Federation

Aminat K. Ebzeeva, MD

Moscow



A. N. Romanova
I.I. Dedov Endocrinology Research Centre
Russian Federation

Alina N. Romanova, MD

Moscow



M. M. Gadzhimuradova
I.I. Dedov Endocrinology Research Centre
Russian Federation

Mansurat M. Gadzhimuradova, MD

Moscow



G. A. Melnichenko
I.I. Dedov Endocrinology Research Centre
Russian Federation

Galina A. Melnichenko, MD, PhD, Prof, acad

Moscow



References

1. Bae YJ, Kratzsch J. Corticosteroid-binding globulin: Modulating mechanisms of bioavailability of cortisol and its clinical implications. Best Pract Res Clin Endocrinol Metab. 2015;29(5):761-772. doi: https://doi.org/10.1016/j.beem.2015.09.001

2. Chernykh A, Abrahams JL, Grant OC, et al. Position-specific N- and O-glycosylation of the reactive center loop impacts neutrophil elastase–mediated proteolysis of corticosteroid-binding globulin. J Biol Chem. 2024;300(1):105519. doi: https://doi.org/10.1016/j.jbc.2023.105519

3. Perogamvros I, Ray DW, Trainer PJ. Regulation of cortisol bioavailability - Effects on hormone measurement and action. Nat Rev Endocrinol. 2012. doi: https://doi.org/10.1038/nrendo.2012.134

4. Meyer EJ, Nenke MA, Rankin W, Lewis JG, Torpy DJ. Corticosteroid-Binding Globulin: A Review of Basic and Clinical Advances. Horm Metab Res. 2016. doi: https://doi.org/10.1055/s-0042-108071

5. Meyer EJ, Nenke MA, Davies ML, et al. Corticosteroid-Binding Globulin Deficiency Independently Predicts Mortality in Septic Shock. J Clin Endocrinol Metab. 2022. doi: https://doi.org/10.1210/clinem/dgac035

6. Gulfo J, Castel R, Ledda A, Romero M del M, Esteve M, Grasa M. Corticosteroid-Binding Globulin is expressed in the adrenal gland and its absence impairs corticosterone synthesis and secretion in a sex-dependent manner. Sci Rep. 2019;9(1):14018. doi: https://doi.org/10.1038/s41598-019-50355-1

7. Daughaday WH, Bremer R, Collins CH. Binding of corticosteroids by plasma proteins. I. Dialysis equilibrium and renal clearance studies 12. J Clin Invest. 1956;35(12):1428-1433. doi: https://doi.org/10.1172/JCI103400

8. Westphal U. Corticosteroid-Binding Globulin (CBG) of Man and Other Species. In: ; 1971. doi: https://doi.org/10.1007/978-3-642-46262-7_8

9. Fernandez-Real J-M, Pugeat M, Grasa M, et al. Serum Corticosteroid-Binding Globulin Concentration and Insulin Resistance Syndrome: A Population Study. J Clin Endocrinol Metab. 2002;87(10):4686-4690. doi: https://doi.org/10.1210/jc.2001-011843

10. Hammond GL. Potential functions of plasma steroid-binding proteins. Trends Endocrinol Metab. 1995;6(9-10):298-304. doi: https://doi.org/10.1016/1043-2760(95)00162-X

11. Lewis JG, Borowski KK, Shand BI, George PM, Scott RS. Plasma sex hormone-binding globulin, corticosteroid-binding globulin, cortisol, and free cortisol levels in outpatients attending a lipid disorders clinic: A cross-sectional study of 1137 subjects. Horm Metab Res. 2010. doi: https://doi.org/10.1055/s-0029-1243260

12. Schlechte JA, Hamilton D. The effect of glucocorticoids on corticosteroid binding globulin. Clin Endocrinol (Oxf). 1987. doi: https://doi.org/10.1111/j.1365-2265.1987.tb01145.x

13. Underhill DA, Hammond GL. Organization of the Human Corticosteroid Binding Globulin Gene and Analysis of Its 5′-Flanking Region. Mol Endocrinol. 1989;3(9):1448-1454. doi: https://doi.org/10.1210/mend-3-9-1448

14. Hammond GL. Molecular Properties of Corticosteroid Binding Globulin and the Sex-Steroid Binding Proteins*. Endocr Rev. 1990;11(1):65-79. doi: https://doi.org/10.1210/edrv-11-1-65

15. Hammond GL, Smith CL, Goping IS, et al. Primary structure of human corticosteroid binding globulin, deduced from hepatic and pulmonary cDNAs, exhibits homology with serine protease inhibitors. Proc Natl Acad Sci. 1987;84(15):5153-5157. doi: https://doi.org/10.1073/pnas.84.15.5153

16. Torpy DJ, Bachmann AW, Grice JE, et al. Familial Corticosteroid-Binding Globulin Deficiency Due to a Novel Null Mutation: Association with Fatigue and Relative Hypotension. J Clin Endocrinol Metab. 2001;86(8):3692-3700. doi: https://doi.org/10.1210/jcem.86.8.7724

17. Torpy DJ, Lundgren BA, Ho JT, Lewis JG, Scott HS, Mericq V. CBG Santiago: A Novel CBG Mutation. J Clin Endocrinol Metab. 2012;97(1):E151-E155. doi: https://doi.org/10.1210/jc.2011-2022

18. Cizza G, Bernardi L, Smirne N, et al. Clinical Manifestations of Highly Prevalent Corticosteroid-Binding Globulin Mutations in a Village in Southern Italy. J Clin Endocrinol Metab. 2011;96(10):E1684-E1693. doi: https://doi.org/10.1210/jc.2011-1321

19. Gulfo J, Ledda A, Serra E, Cabot C, Esteve M, Grasa M. Altered lipid partitioning and glucocorticoid availability in CBG‐deficient male mice with diet‐induced obesity. Obesity. 2016;24(8):1677-1686. doi: https://doi.org/10.1002/oby.21543

20. Petersen HH, Andreassen TK, Breiderhoff T, et al. Hyporesponsiveness to Glucocorticoids in Mice Genetically Deficient for the Corticosteroid Binding Globulin. Mol Cell Biol. 2006;26(19):7236-7245. doi: https://doi.org/10.1128/MCB.00400-06

21. Perogamvros I, Kayahara M, Trainer PJ, Ray DW. Serum regulates cortisol bioactivity by corticosteroid-binding globulin-dependent and independent mechanisms, as revealed by combined bioassay and physicochemical assay approaches. Clin Endocrinol (Oxf). 2011. doi: https://doi.org/10.1111/j.1365-2265.2011.04003.x

22. Simard M, Hill LA, Lewis JG, Hammond GL. Naturally Occurring Mutations of Human Corticosteroid-Binding Globulin. J Clin Endocrinol Metab. 2015;100(1):E129-E139. doi: https://doi.org/10.1210/jc.2014-3130

23. Van Baelen H, Power SG, Hammond GL. Decreased cortisol-binding affinity of transcortin Leuven is associated with an amino acid substitution at residue-93. Steroids. 1993 Jun;58(6):275-7. doi: 10.1016/0039-128x(93)90072-u. PMID: 8212073.

24. Emptoz-Bonneton A. Novel Human Corticosteroid-Binding Globulin Variant with Low Cortisol-Binding Affinity. J Clin Endocrinol Metab. 2000;85(1):361-367. doi: https://doi.org/10.1210/jc.85.1.361

25. Perogamvros I, Underhill C, Henley DE, et al. Novel Corticosteroid-Binding Globulin Variant That Lacks Steroid Binding Activity. J Clin Endocrinol Metab. 2010;95(10):E142-E150. doi: https://doi.org/10.1210/jc.2010-0746

26. Hill LA, Vassiliadi DA, Simard M, et al. Two Different Corticosteroid-Binding Globulin Variants that Lack Cortisol-Binding Activity in a Greek Woman. J Clin Endocrinol Metab. 2012;97(11):4260-4267. doi: https://doi.org/10.1210/jc.2012-2467

27. Bolton JL, Hayward C, Direk N, et al. Genome Wide Association Identifies Common Variants at the SERPINA6/SERPINA1 Locus Influencing Plasma Cortisol and Corticosteroid Binding Globulin. PLoS Genet. 2014. doi: https://doi.org/10.1371/journal.pgen.1004474

28. Bankier S, Wang L, Crawford A, et al. Plasma cortisol-linked gene networks in hepatic and adipose tissues implicate corticosteroid-binding globulin in modulating tissue glucocorticoid action and cardiovascular risk. Front Endocrinol (Lausanne). 2023;14. doi: https://doi.org/10.3389/fendo.2023.1186252

29. Crawford AA, Bankier S, Altmaier E, et al. Variation in the SERPINA6/SERPINA1 locus alters morning plasma cortisol, hepatic corticosteroid binding globulin expression, gene expression in peripheral tissues, and risk of cardiovascular disease. J Hum Genet. 2021. doi: https://doi.org/10.1038/s10038-020-00895-6

30. Jung C, Ho JT, Torpy DJ, et al. A longitudinal study of plasma and urinary cortisol in pregnancy and postpartum. J Clin Endocrinol Metab. 2011. doi: https://doi.org/10.1210/jc.2010-2395

31. Ho JT, Lewis JG, O’Loughlin P, et al. Reduced maternal corticosteroid-binding globulin and cortisol levels in pre-eclampsia and gamete recipient pregnancies. Clin Endocrinol (Oxf). 2007. doi: https://doi.org/10.1111/j.1365-2265.2007.02826.x

32. Robinson BG, Emanuel RL, Frim DM, Majzoub JA. Glucocorticoid stimulates expression of corticotropin-releasing hormone gene in human placenta. Proc Natl Acad Sci. 1988;85(14):5244-5248. doi: https://doi.org/10.1073/pnas.85.14.5244

33. Oftedal A, Bekkhus M, Haugen G, et al. Changes in maternal cortisol, cortisol binding globulin and cortisone levels following diagnosis of fetal anomaly. Psychoneuroendocrinology. 2022. doi: https://doi.org/10.1016/j.psyneuen.2021.105574

34. Pofi R, Tomlinson JW. Glucocorticoids in pregnancy. Obstet Med. 2020;13(2):62-69. doi: https://doi.org/10.1177/1753495X19847832

35. Benassayag C, Souski I, Mignot TM, et al. Corticosteroid-binding globulin status at the fetomaternal interface during human term pregnancy. Biol Reprod. 2001. doi: https://doi.org/10.1095/biolreprod64.3.812

36. Lei JH, Yang X, Peng S, et al. Impact of corticosteroid-binding globulin deficiency on pregnancy and neonatal sex. J Clin Endocrinol Metab. 2015. doi: https://doi.org/10.1210/jc.2014-4254

37. Clifton VL. Review: Sex and the Human Placenta: Mediating Differential Strategies of Fetal Growth and Survival. Placenta. 2010. doi: https://doi.org/10.1016/j.placenta.2009.11.010

38. Seth S, Lewis AJ, Galbally M. Perinatal maternal depression and cortisol function in pregnancy and the postpartum period: A systematic literature review. BMC Pregnancy Childbirth. 2016. doi: https://doi.org/10.1186/s12884-016-0915-y

39. Hemmingsen SD, Jensen NA, Larsen PV, Sjögren JM, Lichtenstein MB, Støving RK. Cortisol, Depression, and Anxiety Levels Before and After Short-Term Intensive Nutritional Stabilization in Patients With Severe Anorexia Nervosa. Front Psychiatry. 2022. doi: https://doi.org/10.3389/fpsyt.2022.939225

40. Yavuz A, Kücükbas GN, Hacioglu Y, Niyazoglu M, Alcalar N, Hatipoglu E. Third trimester physiological hypercortisolemia may protect from postpartum depression and stress. Eur Rev Med Pharmacol Sci. 2023. doi: https://doi.org/10.26355/eurrev_202304_31935

41. Brotherton J. Cortisol and transcortin in human seminal plasma and amniotic fluid as estimated by modern specific assays. Andrologia. 2009;22(3):197-204. doi: https://doi.org/10.1111/j.1439-0272.1990.tb01966.x

42. Scott SM, Wells L. Corticosteroid-binding globulin in preterm infants in an intensive care unit. Horm Res. 1995. doi: https://doi.org/10.1159/000184629

43. Mitchell E, Torpy D, Bagley C. Pregnancy-associated Corticosteroid-binding Globulin: High Resolution Separation of Glycan Isoforms. Horm Metab Res. 2004;36(06):357-359. doi: https://doi.org/10.1055/s-2004-814580

44. Strel’chyonok OA, Avvakumov G V., Akhrem AA. Pregnancy-associated molecular variants of human serum transcortin and thyroxine-binding globulin. Carbohydr Res. 1984;134(1):133-140. doi: https://doi.org/10.1016/0008-6215(84)85028-4

45. Avvakumov G V., Hammond GL. Glycosylation of Human Corticosteroid-Binding Globulin. Differential Processing and Significance of Carbohydrate Chains at Individual Sites. Biochemistry. 1994. doi: https://doi.org/10.1021/bi00185a012

46. Hodyl NA, Stark MJ, Meyer EJ, Lewis JG, Torpy DJ, Nenke MA. High binding site occupancy of corticosteroid-binding globulin by progesterone increases fetal free cortisol concentrations. Eur J Obstet Gynecol Reprod Biol. 2020. doi: https://doi.org/10.1016/j.ejogrb.2020.05.034

47. Müssig K, Remer T, Maser-Gluth C. Brief review: Glucocorticoid excretion in obesity. J Steroid Biochem Mol Biol. 2010;121(3-5):589-593. doi: https://doi.org/10.1016/j.jsbmb.2010.01.008

48. Incollingo Rodriguez AC, Epel ES, White ML, Standen EC, Seckl JR, Tomiyama AJ. Hypothalamic-pituitary-adrenal axis dysregulation and cortisol activity in obesity: A systematic review. Psychoneuroendocrinology. 2015;62:301-318. doi: https://doi.org/10.1016/j.psyneuen.2015.08.014

49. Mårin P, Darin N, Amemiya T, Andersson B, Jern S, Björntorp P. Cortisol secretion in relation to body fat distribution in obese premenopausal women. Metabolism. 1992;41(8):882-886. doi: https://doi.org/10.1016/0026-0495(92)90171-6

50. Pasquali R, Cantobelli S, Casimirri F, et al. The hypothalamic-pituitary-adrenal axis in obese women with different patterns of body fat distribution. J Clin Endocrinol Metab. 1993;77(2):341-346. doi: https://doi.org/10.1210/jcem.77.2.8393881

51. Fernández-Real J-M, Grasa M, Casamitjana R, Pugeat M, Barret C, Ricart W. Plasma Total and Glycosylated Corticosteroid-Binding Globulin Levels Are Associated with Insulin Secretion. J Clin Endocrinol Metab. 1999;84(9):3192-3196. doi: https://doi.org/10.1210/jcem.84.9.5946

52. Holt HB, Wild SH, Postle AD, et al. Cortisol clearance and associations with insulin sensitivity, body fat and fatty liver in middle-aged men. Diabetologia. 2007;50(5):1024-1032. doi: https://doi.org/10.1007/s00125-007-0629-9

53. Lewis JG, Shand BI, Elder PA, Scott RS. Plasma sex hormone‐binding globulin rather than corticosteroid‐binding globulin is a marker of insulin resistance in obese adult males. Diabetes, Obes Metab. 2004;6(4):259-263. doi: https://doi.org/10.1111/j.1462-8902.2004.00343.x

54. Crave JC, Lejeune H, Brébant C, Baret C, Pugeat M. Differential effects of insulin and insulin-like growth factor I on the production of plasma steroid-binding globulins by human hepatoblastoma-derived (Hep G2) cells. J Clin Endocrinol Metab. 1995;80(4):1283-1289. doi: https://doi.org/10.1210/jcem.80.4.7536204

55. Fernández-Real JM, Broch M, Vendrell J, et al. Interleukin-6 gene polymorphism and insulin sensitivity. Diabetes. 2000. doi: https://doi.org/10.2337/diabetes.49.3.517

56. Targher G, Seidell J, Tonoli M, Muggeo M, De Sandre G, Cigolini M. The white blood cell count: its relationship to plasma insulin and other cardiovascular risk factors in healthy male individuals. J Intern Med. 1996;239(5):435-441. doi: https://doi.org/10.1046/j.1365-2796.1996.815000.x

57. Ellulu MS, Patimah I, Khaza H, Rahmat A, Abed Y. State of the art paper Obesity and inflammation: the linking mechanism and the complications. 2017

58. Artemniak-Wojtowicz D, Pyrżak B, Kucharska AM. Obesity and chronic inflammation crosslinking. Cent Eur J Immunol. 2020. doi: https://doi.org/10.5114/CEJI.2020.103418

59. Hill LA, Bodnar TS, Weinberg J, Hammond GL. Corticosteroid-binding globulin is a biomarker of inflammation onset and severity in female rats. J Endocrinol. 2016. doi: https://doi.org/10.1530/JOE-16-0047

60. Janssen JAMJL. New Insights into the Role of Insulin and Hypothalamic-Pituitary-Adrenal (HPA) Axis in the Metabolic Syndrome. Int J Mol Sci. 2022;23(15):8178. doi: https://doi.org/10.3390/ijms23158178

61. Troshina EA. The role of cytokines in the processes of adaptive integration of immune and neuroendocrine reactions of the human body. Probl Endokrinol (Mosk). 2021. doi: https://doi.org/10.14341/PROBL12744

62. Emptoz-Bonneton A, Crave JC, Lejeune H, Brébant C, Pugeat M. Corticosteroid-Binding Globulin Synthesis Regulation by Cytokines and Glucocorticoids in Human Hepatoblastoma-Derived (HepG2) Cells 1. J Clin Endocrinol Metab. 1997;82(11):3758-3762. doi: https://doi.org/10.1210/jcem.82.11.4362

63. Bartalena L, Hammond GL, Farsetti A, Flink IL R.J. Interleukin-6 inhibits corticosteroid-binding globulin synthesis by human hepatoblastomaderived (HepG2) cells. Endocrinology. 1993; 133:291–296

64. Edwards C. Sixty Years after Hench—Corticosteroids and Chronic Inflammatory Disease. J Clin Endocrinol Metab. 2012;97(5):1443-1451. doi: https://doi.org/10.1210/jc.2011-2879

65. Chrousos GP. The Hypothalamic–Pituitary–Adrenal Axis and Immune-Mediated Inflammation. N Engl J Med. 1995. doi: https://doi.org/10.1056/nejm199505183322008

66. Klieber MA, Underhill C, Hammond GL, Muller YA. Corticosteroid-binding Globulin, a Structural Basis for Steroid Transport and Proteinase-triggered Release. J Biol Chem. 2007;282(40):29594-29603. doi: https://doi.org/10.1074/jbc.M705014200

67. Gardill BR, Vogl MR, Lin HY, Hammond GL, Muller YA. Corticosteroid-Binding Globulin: Structure-Function Implications from Species Differences. PLoS One. 2012. doi: https://doi.org/10.1371/journal.pone.0052759

68. Simard M, Hill LA, Underhill CM, et al. Pseudomonas Aeruginosa Elastase Disrupts the Cortisol-Binding Activity of Corticosteroid-Binding Globulin. Endocrinology. 2014;155(8):2900-2908. doi: https://doi.org/10.1210/en.2014-1055

69. Sumer-Bayraktar Z, Kolarich D, Campbell MP, Ali S, Packer NH, Thaysen-Andersen M. N-Glycans Modulate the Function of Human Corticosteroid-Binding Globulin. Mol Cell Proteomics. 2011;10(8):M111.009100. doi: https://doi.org/10.1074/mcp.M111.009100

70. McCarthy C, Saldova R, Wormald MR, Rudd PM, McElvaney NG, Reeves EP. The Role and Importance of Glycosylation of Acute Phase Proteins with Focus on Alpha-1 Antitrypsin in Acute and Chronic Inflammatory Conditions. J Proteome Res. 2014;13(7):3131-3143. doi: https://doi.org/10.1021/pr500146y

71. Lewis JG, Saunders K, Dyer A, Elder PA. The half-lives of intact and elastase cleaved human corticosteroid-binding globulin (CBG) are identical in the rabbit. J Steroid Biochem Mol Biol. 2015;149:53-57. doi: https://doi.org/10.1016/j.jsbmb.2015.01.020

72. Nenke MA, Holmes M, Rankin W, Lewis JG, Torpy DJ. Corticosteroid-binding globulin cleavage is paradoxically reduced in alpha-1 antitrypsin deficiency: Implications for cortisol homeostasis. Clin Chim Acta. 2016;452:27-31. doi: https://doi.org/10.1016/j.cca.2015.10.028

73. Tsigos C, Kyrou I, Chrousos GP, Papanicolaou DA. Prolonged Suppression of Corticosteroid-Binding Globulin by Recombinant Human Interleukin-6 in Man. J Clin Endocrinol Metab. 1998;83(9):3379-3379. doi: https://doi.org/10.1210/jcem.83.9.5100-5

74. Bernier J, Jobin N, Emptoz-Bonneton A, Pugeat MM, Garrel DR. Decreased corticosteroid-binding globulin in burn patients. Crit Care Med. 1998;26(3):452-460. doi: https://doi.org/10.1097/00003246-199803000-00014

75. Dimopoulou I, Tzanela M, Vassiliadi D, et al. Pituitary-adrenal responses following major abdominal surgery. Hormones. 2008. doi: https://doi.org/10.14310/horm.2002.1203

76. Gibbison B, Spiga F, Walker JJ, et al. Dynamic Pituitary-Adrenal Interactions in Response to Cardiac Surgery*. Crit Care Med. 2015;43(4):791-800. doi: https://doi.org/10.1097/CCM.0000000000000773

77. Muller CA, Belyaev O, Vogeser M, et al. Corticosteroid-binding globulin: A possible early predictor of infection in acute necrotizing pancreatitis. Scand J Gastroenterol. 2007;42(11):1354-1361. doi: https://doi.org/10.1080/00365520701416691

78. Beishuizen A, Thijs LG, Vermes I. Patterns of corticosteroid-binding globulin and the free cortisol index during septic shock and multitrauma. Intensive Care Med. 2001;27(10):1584-1591. doi: https://doi.org/10.1007/s001340101073

79. Nenke MA, Rankin W, Chapman MJ, et al. Depletion of high‐affinity corticosteroid‐binding globulin corresponds to illness severity in sepsis and septic shock; clinical implications. Clin Endocrinol (Oxf). 2015;82(6):801-807. doi: https://doi.org/10.1111/cen.12680

80. Ho JT, Al-Musalhi H, Chapman MJ, et al. Septic Shock and Sepsis: A Comparison of Total and Free Plasma Cortisol Levels. J Clin Endocrinol Metab. 2006;91(1):105-114. doi: https://doi.org/10.1210/jc.2005-0265

81. Lee JH, Meyer EJ, Nenke MA, Falhammar H, Torpy DJ. Corticosteroid-binding globulin (CBG): spatiotemporal distribution of cortisol in sepsis. Trends Endocrinol Metab. 2023. doi: https://doi.org/10.1016/j.tem.2023.01.002

82. Meyer EJ, Nenke MA, Rankin W, et al. Total and high-affinity corticosteroid-binding globulin depletion in septic shock is associated with mortality. Clin Endocrinol (Oxf). 2019. doi: https://doi.org/10.1111/cen.13844

83. Doe R.P., Fernandez R., Seal U.S. Measurement of Corticosteroid-Binding Globulin in Man. The Journal of clinical endocrinology and metabolism. 1964;24:1029–1039. doi: https://doi.org/10.1210/jcem-24-10-1029

84. Doe RP, Zinneman HH, Flink EB, et al. Significance of the concentration of nonprotein-bound plasma cortisol in normal subjects, Cushing’s syndrome, pregnancy, and during estrogen therapy*†. J Clin Endocrinol Metab. 1960;20(11):1484-1492. doi: https://doi.org/10.1210/jcem-20-11-1484

85. Murray D. Cortisol binding to plasma proteins in man in health, stress and at death. The Journal of endocrinology. 1967;4(39):571–591. doi: https://doi.org/10.1677/joe.0.0390571

86. Osorio C., Schats D.L. Determination of the Binding Capacity of Corticosteroid-Binding Globulin by Paper Electrophoresis. The Journal of Clinical Endocrinology & Metabolism. 1964;10(24):1067–1071. doi: https://doi.org/10.1210/jcem-24-10-1067

87. De Moor P, Steeno O, Brosens I, Hendrikx A. Data on transcortin activity in human plasma as studied by gel filtration. J Clin Endocrinol Metab. 1966. doi: https://doi.org/10.1210/jcem-26-1-71

88. Panton KK, Mikkelsen G, Irgens WØ, et al. New reference intervals for cortisol, cortisol binding globulin and free cortisol index in women using ethinyl estradiol. Scand J Clin Lab Invest. 2019. doi: https://doi.org/10.1080/00365513.2019.1622031

89. Nader N, Raverot G, Emptoz-Bonneton A, et al. Mitotane has an estrogenic effect on sex hormone-binding globulin and corticosteroid-binding globulin in humans. J Clin Endocrinol Metab. 2006. doi: https://doi.org/10.1210/jc.2005-2157

90. Lech M, Ranasinghe R, Vincent RP, et al. The impact of mitotane therapy on serum-free proteins in patients with adrenocortical carcinoma. Endocr Connect. 2024.13(3), Article e230159. doi: https://doi.org/10.1530/EC-23-0159

91. Pugeat M.M., Dunn J.F., Nisula B.C. Transport of Steroid Hormones : Interaction of 70 Drugs. Journal of Clinical Endocrinology and Metabolism. 1980;1(53):69–75

92. Manco M, Fernández-Real JM, Valera-Mora ME, et al. Massive weight loss decreases corticosteroid-binding globulin levels and increases free cortisol in healthy obese patients. An adaptive phenomenon? Diabetes Care. 2007. doi: https://doi.org/10.2337/dc06-1353

93. Samuel AM, Kadival G V., Patel BD, Desai AG. Adrenocorticosteroids and corticosteroid binding globulins in protein calorie malnutrition. Am J Clin Nutr. 1976. doi: https://doi.org/10.1093/ajcn/29.8.889

94. Gewolb IH, Warshaw JB. Fetal and maternal corticosterone and corticosteroid binding globulin in the diabetic rat gestation. Pediatr Res. 1986. doi: https://doi.org/10.1203/00006450-198602000-00012


Supplementary files

Review

For citations:


Chevais A., Beltsevich D.G., Gadzhieva K.Sh., Bagirova H.V., Ebzeeva A.K., Romanova A.N., Gadzhimuradova M.M., Melnichenko G.A. Factors and conditions affecting transcortin production and function in blood plasma. Problems of Endocrinology. 2025;71(3):14-24. (In Russ.) https://doi.org/10.14341/probl13483

Views: 196


ISSN 0375-9660 (Print)
ISSN 2308-1430 (Online)