Preview

Проблемы Эндокринологии

Расширенный поиск

Псевдогипопаратиреоз

https://doi.org/10.14341/probl201561347-56

Аннотация

Псевдогипопаратиреоз (ПГП) - редкое генетическое заболевание, проявляющееся нарушением фосфорно-кальциевого обмена, обусловленным резистентностью к паратгормону (ПТГ). Клинический вариант ПГП зависит не только от резистентности к ПТГ; возможен фенотип, обусловленный мультигормональной резистентностью. Резистентность к ПТГ связана с нарушением активности α-субъединицы G-белка вследствие дефекта гена GNAS и эпигенетических сдвигов. Механизм развития этого редкого (орфанного) заболевания очень сложен и до конца не изучен. В обзоре отражены современные представления об этиологии, патогенезе и клиническом разнообразии ПГП.

Об авторах

Н В Маказан
ФГБУ «Эндокринологический научный центр»


Е М Орлова
ФГБУ «Эндокринологический научный центр»


М А Карева
ФГБУ «Эндокринологический научный центр»


Список литературы

1. Nakamura Y, Matsumoto T, Tamakoshi A. Prevalence of idiopathic hypoparathyroidism and pseudohypoparathyroidism in japan. J Epidemiol. 2000;10(1):29-33. doi: 10.2188/jea.10.29.

2. Underbjerg L, Sikjaer T, Mosekilde L, Rejnmark L. The epidemiology of hypo- and pseudohypoparathyroidism in denmark. Bone. 2012;50:s171. doi: 10.1016/j.bone.2012.02.536.

3. Burnett C, Smith P, Parson W. Pseudohypoparathyroidism-an example of’seabright-bantam syndrome. Endocrinology. 1942;30:922-932.

4. Mantovani G, Spada A. Mutations in the gs alpha gene causing hormone resistance. Best Practice & Research Clinical Endocrinology & Metabolism. 2006;20(4):501-513. doi: 10.1016/j.beem.2006.09.00.

5. Chen RA, Goodman WG. Role of the calcium-sensing receptor in parathyroid gland physiology. American journal of physiology - renal physiology. 2004;286(6):1005-1011. doi: 10.1152/ajprenal.00013.2004.

6. The American Society for Bone and Mineral Research President’s Committee on Nomenclature. Proposed standard nomenclature for new tumor necrosis factor family members involved in the regulation of bone resorption. J Bone Miner Res. 2000;15(12):2293-2296. doi: 10.1359/jbmr.2000.15.12.2293.

7. Tsuda E, Goto M, Mochizuki S-I, et al. Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem Biophys Res Commun. 1997;234(1):137-142. doi: 10.1006/bbrc.1997.6603.

8. Nakashima T, Hayashi M, Fukunaga T. et al. Evidence for osteocyte regulation of bone homeostasis through rankl expression. Nat Med. 2011;17(10):1231-1234. doi: 10.1038/nm.2452.

9. Nakagawa N, Kinosaki M, Yamaguchi K, et al. Rank is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis. Biochem Biophys Res Commun. 1998;253(2):395-400. doi: 10.1006/bbrc.1998.9788.

10. Huang JC, Sakata T, Pfleger LL, et al. PTH Differentially Regulates Expression of RANKL and OPG. J Bone Miner Res. 2003;19(2):235-244. doi: 10.1359/jbmr.0301226.

11. Bellido T, Saini V, Pajevic PD. Effects of PTH on osteocyte function. Bone. 2013;54(2):250-257. doi: 10.1016/j.bone.2012.09.016.

12. Weinstein LS, Yu S, Ecelbarger CA. Variable imprinting of the heterotrimeric G protein Gsα-subunit within different segments of the nephron. American Journal of Physiology Renal Physiology. 2000;278(4):F507-F514.

13. Weinstein LS, Yu S, Warner DR, Liu J. Endocrine Manifestations of Stimulatory G Protein α-Subunit Mutations and the Role of Genomic Imprinting. Endocr Rev. 2001;22(5):675-705. doi: 10.1210/edrv.22.5.0439.

14. Weinstein LS, Shenker A, Gejman PV, et al. Activating Mutations of the Stimulatory G Protein in the mccune - Albright Syndrome. N Engl J Med. 1991;325(24):1688-1695. doi: 10.1056/nejm199112123252403.

15. Chotalia M, Smallwood SA, Ruf N, et al. Transcription is required for establishment of germline methylation marks at imprinted genes. Genes Dev. 2009;23(1):105-117. doi: 10.1101/gad.495809.

16. Liu Z, Segawa H, Aydin C, et al. Transgenic Overexpression of the Extra-Large Gsα Variant xlαs Enhances Gsα-Mediated Responses in the Mouse Renal Proximal Tubulein Vivo. Endocrinology. 2011;152(4):1222-1233. doi: 10.1210/en.2010-1034.

17. Plagge A, Gordon E, Dean W, et al. The imprinted signaling protein xlαs is required for postnatal adaptation to feeding. Nat Genet. 2004;36(8):818-826. doi: 10.1038/ng1397.

18. Eaton SA, Williamson CM, Ball ST, et al. New Mutations at the Imprinted Gnas Cluster Show Gene Dosage Effects of Gs in Postnatal Growth and Implicate XLs in Bone and Fat Metabolism but Not in Suckling. Mol Cell Biol. 2012;32(5):1017-1029. doi: 10.1128/mcb.06174-11.

19. Chillambhi S, Turan S, Hwang D-Y, et al. Deletion of the noncodinggnasantisense Transcript Causes Pseudohypoparathyroidism Type Ib and Biparental Defects ofgnasmethylationin cis. J Clin Endocrinol Metab. 2010;95(8):3993-4002. doi: 10.1210/jc.2009-2205.

20. Ishikawa Y, Bianchi C, Nadal-Ginard B, Homcy CJ. Alternative promoter and 5’ exon generate a novel Gs alpha mrna. J Biol Chem. 1990;265(15):8458-8462.

21. Puzhko S, Goodyer CG, Kerachian MA, et al. Parathyroid hormone signaling via Gαs is selectively inhibited by an NH2-terminally truncated Gαs: Implications for pseudohypoparathyroidism. J Bone Miner Res. 2011;26(10):2473-2485. doi: 10.1002/jbmr.461.

22. 10.1210/jc.2011-1048.

23. Hayward BE, Barlier A, Korbonits M, et al. Imprinting of the Gsα gene GNAS1 in the pathogenesis of acromegaly. J Clin Invest. 2001;107(6):R31-R36. doi: 10.1172/jci11887.

24. Mantovani G, Ballare E, Giammona E, et al. The Gsα Gene: Predominant Maternal Origin of Transcription in Human Thyroid Gland and Gonads. J Clin Endocrinol Metab. 2002;87(10):4736-4740. doi: 10.1210/jc.2002-020183.

25. Bastepe M, uuml, ppner H. <i>GNAS</i> Locus and Pseudohypoparathyroidism. Horm Res. 2005;63(2):65-74. doi: 10.1159/000083895.

26. Liu J, Litman D, Rosenberg MJ, et al. A GNAS1 imprinting defect in pseudohypoparathyroidism type IB. J Clin Invest. 2000;106(9):1167-1174. doi: 10.1172/jci10431.

27. Linglart A, Gensure RC, Olney RC, et al. A Novel STX16 Deletion in Autosomal Dominant Pseudohypoparathyroidism Type Ib Redefines the Boundaries of a cis-Acting Imprinting Control Element of GNAS. The American Journal of Human Genetics. 2005;76(5):804-814. doi: 10.1086/429932.

28. Fernandez-Rebollo E, Lecumberri B, Garin I, et al. New mechanisms involved in paternal 20q disomy associated with pseudohypoparathyroidism. Eur J Endocrinol. 2010;163(6):953-962. doi: 10.1530/eje-10-0435.

29. Wu WI, Schwindinger WF, Aparicio LF, Levine MA. Selective Resistance to Parathyroid Hormone Caused by a Novel Uncoupling Mutation in the Carboxyl Terminus of Galpha s. A cause of pseudohypoparathyroidism type Ib. J Biol Chem. 2000;276(1):165-171. doi: 10.1074/jbc.M006032200.

30. Fernández-Rebollo E, Lecumberri B, Gaztambide S, et al. Endocrine Profile and Phenotype-(Epi)Genotype Correlation in Spanish Patients with Pseudohypoparathyroidism. J Clin Endocrinol Metab. 2013;98(5):E996-E1006. doi: 10.1210/jc.2012-4164.

31. Farfel Z, Brickman AS, Kaslow HR, et al. Defect of Receptor-Cyclase Coupling Protein in Pseudohypoparathyroidism. N Engl J Med. 1980;303(5):237-242. doi: 10.1056/nejm198007313030501.

32. Thiele S, de Sanctis L, Werner R, et al. Functional characterization of GNAS mutations found in patients with pseudohypoparathyroidism type Ic defines a new subgroup of pseudohypoparathyroidism affecting selectively Gsα-receptor interaction. Hum Mutat. 2011;32(6):653-660. doi: 10.1002/humu.21489.

33. Murakami T, Nambu T, Morimoto Y, et al. Pseudohypoparathyroidism Type II in a Woman with a History of Thyroid Surgery. Intern Med. 2014;53(7):743-747. doi: 10.2169/internalmedicine.53.1617.

34. Linglart A, Menguy C, Couvineau A, et al. Recurrentprkar1amutation in Acrodysostosis with Hormone Resistance. N Engl J Med. 2011;364(23):2218-2226. doi: 10.1056/nejmoa1012717.

35. Wilson LC, Trembath RC. Albright’s hereditary osteodystrophy. J Med Genet. 1994;31(10):779-784.

36. Kaplan FS, Shore EM. Progressive Osseous Heteroplasia. J Bone Miner Res. 2000;15(11):2084-2094. doi: 10.1359/jbmr.2000.15.11.2084.

37. Shoemaker AH, Lomenick JP, Saville BR, et al. Energy expenditure in obese children with pseudohypoparathyroidism type 1a. Int J Obes. 2012;37(8):1147-1153. doi: 10.1038/ijo.2012.200.

38. Germain-Lee EL, Schwindinger W, Crane JL, et al. A Mouse Model of Albright Hereditary Osteodystrophy Generated by Targeted Disruption of Exon 1 of thegnasgene. Endocrinology. 2005;146(11):4697-4709. doi: 10.1210/en.2005-0681.

39. Long DN, Mcguire S, Levine MA, et al. Body Mass Index Differences in Pseudohypoparathyroidism Type 1aversuspseudopseudohypoparathyroidism May Implicate Paternal Imprinting of Gαsin the Development of Human Obesity. J Clin Endocrinol Metab. 2007;92(3):1073-1079. doi: 10.1210/jc.2006-1497.

40. Farooqi IS, Keogh JM, Yeo GSH, et al. Clinical Spectrum of Obesity and Mutations in the Melanocortin 4 Receptor Gene. N Engl J Med. 2003;348(12):1085-1095. doi: 10.1056/nejmoa022050.

41. Krakoff J, Ma L, Kobes S, et al. Lower Metabolic Rate in Individuals Heterozygous for Either a Frameshift or a Functional Missense MC4R Variant. Diabetes. 2008;57(12):3267-3272. doi: 10.2337/db08-0577.

42. Chen M, Wang J, Dickerson KE, et al. Central Nervous System Imprinting of the G Protein Gsα and Its Role in Metabolic Regulation. Cell Metab. 2009;9(6):548-555. doi: 10.1016/j.cmet.2009.05.004.

43. Chen M, Gavrilova O, Liu J, et al. Alternative Gnas gene products have opposite effects on glucose and lipid metabolism. Proceedings of the National Academy of Sciences. 2005;102(20):7386-7391. doi: 10.1073/pnas.0408268102.

44. Otheman Y, Khalloufi H, Benhima I, Ouanass A. Manifestations neuropsychiatriques révélant une pseudohypoparathyroïdie avec un syndrome de Fahr. L’Encéphale. 2011;37(1):54-58. doi: 10.1016/j.encep.2010.03.001.

45. Maeda K, Shirayama Y, Nagami T, et al. Case of pseudo-pseudohypoparathyroidism associated with juvenile dementia. Psychiatry Clin Neurosci. 2005;59(1):111-111. doi: 10.1111/j.1440-1819.2005.01339.x.

46. Hacıhamdioğlu B, Arslan M, Sarı E, et al. Brachydactyly mental retardation syndrome in differential diagnosis of pseudopseudohypoparathyroidism. J Pediatr Endocrinol Metab. 2013;26(7-8). doi: 10.1515/jpem-2012-0375.

47. Mantovani G, Ferrante E, Giavoli C, et al. Recombinant Human GH Replacement Therapy in Children with Pseudohypoparathyroidism Type Ia: First Study on the Effect on Growth. J Clin Endocrinol Metab. 2010;95(11):5011-5017. doi: 10.1210/jc.2010-1649.

48. Mantovani G, Maghnie M, Weber G. et al. Growth Hormone-Releasing Hormone Resistance in Pseudohypoparathyroidism Type Ia: New Evidence for Imprinting of the Gsα Gene. J Clin Endocrinol Metab. 2003;88(9):4070-4074. doi: 10.1210/jc.2002-022028.

49. Bastepe M, Weinstein LS, Ogata N, et al. Stimulatory G protein directly regulates hypertrophic differentiation of growth plate cartilage in vivo. Proceedings of the National Academy of Sciences. 2004;101(41):14794-14799. doi: 10.1073/pnas.0405091101.

50. Farfel Z, Brothers VM, Brickman AS, et al. Pseudohypoparathyroidism: inheritance of deficient receptor-cyclase coupling activity. Proceedings of the National Academy of Sciences. 1981;78(5):3098-3102. doi: 10.1073/pnas.78.5.3098.

51. Tsai KS, Chang CC, Wu DJ, et al. Deficient erythrocyte membrane Gs alpha activity and resistance to trophic hormones of multiple endocrine organs in two cases of pseudohypoparathyroidism. Taiwan Yi Xue Hui Za Zhi. 1989;88(5):450-455.

52. Ridderskamp P, Schlaghecke R. Pseudohypoparathyreoidismus und Nebennierenrindeninsuffizienz. Klin Wochenschr. 1990;68(18):927-931. doi: 10.1007/bf01649041.

53. Chaubey S, Sangla K. A Sporadic Case of Pseudohypoparathyroidism Type 1 and Idiopathic Primary Adrenal Insufficiency Associated with a Novel Mutation in thegnas1gene. Endocr Pract. 2014;20(10):e202-e206.


Рецензия

Для цитирования:


Маказан Н.В., Орлова Е.М., Карева М.А. Псевдогипопаратиреоз. Проблемы Эндокринологии. 2015;61(3):47-56. https://doi.org/10.14341/probl201561347-56

For citation:


Makazan N.V., Orlova E.M., Kareva M.A. Pseudo-hypothyroidism. Problems of Endocrinology. 2015;61(3):47-56. (In Russ.) https://doi.org/10.14341/probl201561347-56

Просмотров: 1826


ISSN 0375-9660 (Print)
ISSN 2308-1430 (Online)