The role of the kidneys in glucose homeostasis
https://doi.org/10.14341/probl2017636385-391
Abstract
Until recently, in was believed that degradation of insulin is the main function of the kidneys in maintaining glucose homeostasis. The results of numerous studies showed that the kidneys are involved in filling the energy needs of the body due to the following three key processes: gluconeogenesis, uptake and reabsorption of glucose molecules. The characteristic feature of gluconeogenesis that occurs in the kidneys lies in the fact that it depends on the time elapsed since the last meal. Thus, gluconeogenesis that occurs in the cortical substance of the kidneys provides up to 90% of the glucose entering the blood in the post-absorptive period and up to 60% in the postprandial period. Glucose reabsorption from the glomerular filtrate occurs in the proximal convoluted tubules assisted by sodium-glucose cotransporters, sodium-glucose cotransporters 2 (SGLT2) being the most important of them. It is known that the cells of the proximal convoluted tubules of the kidneys in patients with type 2 diabetes mellitus (DM2) contain significantly more SGLT2 proteins compared to those of healthy individuals. The discovery of the important role of the kidneys in glucose homeostasis led to investigation of the new links in DM2 pathogenesis and the development of a promising approach to its treatment using SGLT2 inhibitors.
About the Authors
Ashot M. MkrtumyanA.I. Evdokimov Moscow State University of Medicine and Dentistry
Russian Federation
MD, Professor
Tatyana N. Markova
A.I. Evdokimov Moscow State University of Medicine and Dentistry; City Clinical Hospital №52
Russian Federation
MD
Nadezhda K. Mishchenko
A.I. Evdokimov Moscow State University of Medicine and Dentistry; City Clinical Hospital №52
Russian Federation
References
1. DeFronzo RA, Davidson JA, Del Prato S. The role of the kidneys in glucose homeostasis: a new path towards normalizing glycaemia. Diabetes Obes Metab. 2012;14(1):5-14. doi: 10.1111/j.1463-1326.2011.01511.x
2. Аметов А.С. Сахарный диабет 2-го типа. Проблемы и решения. — М.: ГЭОТАР-Медиа; 2011. [Ametov AS. Saharnyj diabet 2 tipa. Problemy i reshenija. M: GEOTAR-Media; 2011. (In Russ.)].
3. Consoli A, Kennedy F, Miles J, Gerich J. Determination of Krebs cycle metabolic carbon exchange in vivo and its use to estimate the individual contributions of gluconeogenesis and glycogenolysis to overall glucose output in man. J Clin Invest. 1987;80(5):1303-1310. doi: 10.1172/JCI113206
4. Bock G, Dalla Man C, Campioni M, et al. Pathogenesis of pre-diabetes: mechanisms of fasting and postprandial hyperglycemia in people with impaired fasting glucose and/or impaired glucose tolerance. Diabetes. 2006;55(12):3536-3549. doi: 10.2337/db06-0319
5. Meyer C, Dostou J, Nadkarni V, Gerich J. Effects of physiological hyperinsulinemia on systemic, renal, and hepatic substrate metabolism. Am J Physiol. 1998;275(6 Pt 2):F915-F921.
6. Berg JM, Tymoczko JL, Stryer L. Biochemistry. 5th edition [Internet]. New York: W.H. Freeman; 2002 [cited 2017 Feb 18]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK21154/?term=Biochemistry%20AND%20stryer%5Bbook %5D
7. Stumvoll M, Meyer C, Kreider M, et al. Effects of glucagon on renal and hepatic glutamine gluconeogenesis in normal postabsorptive humans. Metabolism. 1998;47(10):1227-1232. doi: 10.1016/S0026-0495(98)90328-6
8. Gerich JE. Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications. Diabet Med. 2010;27(2):136-142. doi: 10.1111/j.1464-5491.2009.02894.x
9. Nussey S, Whitehead S. Endocrinology: an integrated approach [Internet]. Oxford: BIOS Scientific Publishers; 2001 [cited 2017 Feb 21]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/20821847
10. McKay LI, Cidlowski JA. Physiologic and pharmacologic effects of corticosteroids. In: Kufe DW, Pollock RE, Weichselbaum RR, et al. (eds.). Holland-Frei Cancer Medicine. 6th edition [Internet]. Hamilton (ON): BC Decker; 2003 [cited 2017 Feb 26]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK13780/
11. Кулебякин К.Ю., Акопян Ж.А., Кочегура Т.Н. и др. Механизмы транскрипционного контроля обмена глюкозы в печени // Сахарный диабет. — 2016. — Т. 19. — №3. — C. 190—198. [Kulebyakin KY, Akopyan JA, Kochegura TN, et al. Mechanisms of transcriptional control of glucose metabolism in hepatocytes. Diabetes Mellitus. 2016;19(3):190-198. (In Russ.)]. doi: 10.14341/DM2003436-40
12. Rubenstein AH, Mako ME, Horwitz DL. Insulin and the kidney. Nephron. 1975;15(3-5):306-326. doi: 10.1159/000180518
13. Rabkin R, Ryan MP, Duckworth WC. The renal metabolism of insulin. Diabetologia. 1984;27(3):351-357. doi: 10.1007/bf00304849
14. Landau BR, Wahren J, Chandramouli V, et al. Contributions of gluconeogenesis to glucose production in the fasted state. J Clin Invest. 1996;98(2):378-385. doi: 10.1172/jci118803
15. Stumvoll M, Meyer C, Mitrakou A, et al. Renal glucose production and utilization: new aspects in humans. Diabetologia. 1997;40(7):749-757. doi: 10.1007/s001250050745
16. Gerich JE, Meyer C, Woerle HJ, Stumvoll M. Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care. 2001;24(2):382-391. doi: 10.2337/diacare.24.2.382
17. Meyer C, Stumvoll M, Dostou J, et al. Renal substrate exchange and gluconeogenesis in normal postabsorptive humans. Am J Physiol Endocrinol Metab. 2002;282(2):E428-E434. doi: 10.1152/ajpendo.00116.2001
18. Stumvoll M, Meyer C, Perriello G, et al. Human kidney and liver gluconeogenesis: evidence for organ substrate selectivity. Am J Physiol. 1998;274(5 Pt 1):E817-E826.
19. Shrayyef MZ, Gerich JE. Normal glucose homeostasis. 2010;19-35. doi: 10.1007/978-0-387-09841-8_2
20. Meyer C, Dostou JM, Welle SL, Gerich JE. Role of human liver, kidney, and skeletal muscle in postprandial glucose homeostasis. Am J Physiol Endocrinol Metab. 2002;282(2):E419-E427. doi: 10.1152/ajpendo.00032.2001
21. Joseph SE, Heaton N, Potter D, et al. Renal glucose production compensates for the liver during the anhepatic phase of liver transplantation. Diabetes. 2000;49(3):450-456. doi: 10.2337/diabetes.49.3.450
22. Stumvoll M, Chintalapudi U, Perriello G, et al. Uptake and release of glucose by the human kidney. Postabsorptive rates and responses to epinephrine. J Clin Invest. 1995;96(5):2528-2533. doi: 10.1172/jci118314
23. Mather A, Pollock C. Glucose handling by the kidney. Kidney Int. 2011;79:S1-S6. doi: 10.1038/ki.2010.509
24. Wright EM, Hirayama BA, Loo DF. Active sugar transport in health and disease. J Intern Med. 2007;261(1):32-43. doi: 10.1111/j.1365-2796.2006.01746.x
25. Wright EM, Loo DDF, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev. 2011;91(2):733-794. doi: 10.1152/physrev.00055.2009
26. Dominguez JH, Song B, Maianu L, et al. Gene expression of epithelial glucose transporters: the role of diabetes mellitus. J Am Soc Nephrol. 1994;5:S29-S36.
27. Мкртумян А.М., Егшатян Л.В. Новый неинсулинзависимый подход к терапии сахарного диабета 2-го типа. Дапаглифлозин: результаты клинических исследований. // Эффективная фармакотерапия. Эндокринология. — 2015. — №11. — С. 17—24. [Mkrtumyan AM, Yegshatyan LV. A novel non-insulin dependent approach to therapy of type 2 diabetes mellitus. Dapagliflozin: results of clinical trials. Effective Pharmacotherapy. Endocrinology. 2015;(11):17-24. (In Russ.)].
28. Bakris GL, Fonseca VA, Sharma K, Wright EM. Renal sodium-glucose transport: role in diabetes mellitus and potential clinical implications. Kidney Int. 2009;75(12):1272-1277. doi: 10.1038/ki.2009.87
29. Wright EM. Surprising мersatility of Na+glucose cotransporters: SLC5. Physiology. 2004;19(6):370-376. doi: 10.1152/physiol.00026.2004
30. Wright EM. Renal Na(+)-glucose cotransporters. Am J Physiol Renal Physiol. 2001;280(1): F10-F18.
31. Santer R, Calado J. Familial renal glucosuria and SGLT2: from a mendelian triat to a therapeutic target. Clin J Am Soc Nephrol. 2009;5(1):133-141. doi: 10.2215/cjn.04010609
32. Santer R. Molecular analysis of the SGLT2 gene in patients with renal glucosuria. J Am Soc Nephrol. 2003;14(11):2873-2882. doi: 10.1097/01.asn.0000092790.89332.d2
33. Scholl-Burgi S, Santer R, Ehrich JHH. Long-term outcome of renal glucosuria type 0: the original patient and his natural history. Nephrology Dialysis Transplantation. 2004;19(9):2394-2396. doi: 10.1093/ndt/gfh366
34. Wright EM, Turk E, Zabel B, et al. Molecular genetics of intestinal glucose transport. J Clin Invest. 1991;88(5):1435-1440. doi: 10.1172/jci115451
35. Rahmoune H, Thompson PW, Ward JM, et al. Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes. Diabetes. 2005;54(12):3427-3434. doi: 10.2337/diabetes.54.12.3427
36. Najafian M, Jahromi MZ, Nowroznejhad MJ, et al. Phloridzin reduces blood glucose levels and improves lipids metabolism in streptozotocin-induced diabetic rats. Mol Biol Rep. 2011;39(5):5299-5306. doi: 10.1007/s11033-011-1328-7
37. Rossetti L, Smith D, Shulman GI, et al. Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. J Clin Invest. 1987;79(5):1510-1515. doi: 10.1172/jci112981
38. Wright EM. Glucose galactose malabsorption. Am J Physiol. 1998;275(5 Pt 1):G879-G882.
39. Babu A, Kim, Babu A. Clinical potential of sodium-glucose cotransporter 2 inhibitors in the management of type 2 diabetes. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2012;313. doi: 10.2147/dmso.s22545
40. Sonesson C, Johansson PA, Johnsson E, Gause-Nilsson I. Cardiovascular effects of dapagliflozin in patients with type 2 diabetes and different risk categories: a metaanalysis. Cardiovasc Diabetol. 2016;15(1). doi: 10.1186/s12933-016-0356-y
41. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117-2128. doi: 10.1056/NEJMoa1504720
Supplementary files
|
1. Неозаглавлен | |
Subject | ||
Type | Other | |
View
(95KB)
|
Indexing metadata ▾ |
|
2. Механизм фильтрации и реабсорбции глюкозы в проксимальном канальце. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(86KB)
|
Indexing metadata ▾ |
Review
For citations:
Mkrtumyan A.M., Markova T.N., Mishchenko N.K. The role of the kidneys in glucose homeostasis. Problems of Endocrinology. 2017;63(6):385-391. https://doi.org/10.14341/probl2017636385-391

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).