Positron emission tomography in combination with computed tomography with 18F-fluorocholine in the topical diagnosis of parathyroid tumors and secondary changes in bone tissue associated with hyperparathyroid osteodystrophy: two case studies
https://doi.org/10.14341/probl9548
Abstract
Primary hyperparathyroidism (PHPT) is caused by parathyroid malignant neoplasm in 1% of cases. The risk of the latter is higher in patients with symptomatic PHPT. The prognosis in this group of patients depends on the extent of the process and primary surgical intervention.
In these cases, the differential diagnosis between secondary foci in the bones associated with parathyroid cancer and hyperparathyroid osteodystrophy is a challenging problem.
This article describes two cases of severe PHPT accompanied by hyperparathyroid osteodystrophy suspected for metastatic parathyroid cancer. Positron emission tomography in combination with computed tomography (PET/CT) with 18F-fluorodeoxyglucose (18F-FDG) and/or 18F-fluorocholine was included in the examination algorithm. In both cases, pronounced bone changes similar to parathyroid metastases were observed. Accumulation of 18F-fluorocholine was also observed only in altered parathyroid gland. Histological examination of postoperative material verified benign parathyroid tumors, and characteristic lesions of bone tissue were regarded as areas of osteodystrophy.
Therefore, accumulation of 18F-fluorocholine at the areas of bone destruction does not enable differentiation between hyperparathyroid osteodystrophy and metastatic lesions; further research is required to assess sensitivity and specificity of the method with respect to topical diagnosis of altered parathyroid gland.
About the Authors
Natalia G. MokryshevaEndocrinology Research Centre
Russian Federation
MD, PhD, Professor
Julia A. Krupinova
Endocrinology Research Centre
Russian Federation
MD, researcher at Parathyroid Glands Pathology Department
Mikhail B. Dolgushin
Blokhin Russian Cancer Research Center
Russian Federation
MD, PhD, Professor
Akgul A. Odzharova
Blokhin Russian Cancer Research Center
Russian Federation
MD, PhD
Iya A. Voronkova
Endocrinology Research Centre
Russian Federation
MD, PhD
Valeriy V. Voskoboynikov
Endocrinology Research Centre
Russian Federation
MD, PhD
Nikolaj S. Kuznecov
Endocrinology Research Centre
Russian Federation
MD, PhD, Professor
References
1. Johnson NA, Carty SE, Tublin ME. Parathyroid Imaging. Radiol Clin North Am. 2011;49(3):489-509,Vi. doi: https://doi.org/10.1016/j.rcl.2011.02.009
2. Cheung K, Wang TS, Farrokhyar F, et al. A metaanalysis of reoperative localization techniques for patients with primary hyperparathyroidism. Ann Surg Oncol. 2012;19(2):577-583. doi: https://doi.org/10.1245/s10434-011-1870-5
3. Johnson NA, Tublin ME, Ogilvie JB. Parathyroid imaging: technique and role in the preoperative evaluation of primary hyperparathyroidism. Ajr Am J Roentgenol. 2007;188(6):1706-1715. doi: https://doi.org/10.2214/ajr.06.0938
4. Wong KK, Fig LM, Gross MD, Dwamena BA. Parathyroid adenoma localization with 99mTc-sestamibi spect/CT: a metaanalysis. Nucl Med Commun. 2015;36(4):363-375. doi: https://doi.org/10.1097/mnm.0000000000000262
5. Kluijfhout WP, Pasternak JD, Drake FT, et al. Use of pet tracers for parathyroid localization: a systematic review and metaanalysis. Langenbecks Arch Surg. 2016;401(7):925-935. doi: https://doi.org/10.1007/s00423-016-1425-0
6. Caldarella C, Treglia G, Isgro MA, Giordano A. Diagnostic performance of positron emission tomography using (1)(1)C-methionine in patients with suspected parathyroid adenoma: a metaanalysis. Endocrine. 2013;43(1):78-83. doi: https://doi.org/10.1007/s12020-012-9746-4
7. Quak E, Lheureux S, Reznik Y, et al. F18-choline, a novel pet tracer for parathyroid adenoma? J Clin Endocrinol Metab. 2013;98(8):3111-3112. doi: https://doi.org/10.1210/jc.2013-2084
8. Hodolic M, Huchet V, Balogova S, et al. Incidental uptake of (18)F-fluorocholine (FCH) in the head or in the neck of patients with prostate cancer. Radiol Oncol. 2014;48(3):228-234. doi: https://doi.org/10.2478/raon-2013-0075
9. Cazaentre T, Clivaz F, Triponez F. False-positive result in 18F-fluorocholine PET/CT due to incidental and ectopic parathyroid hyperplasia. Clin Nucl Med. 2014;39(6):E328-E330. doi: https://doi.org/10.1097/rlu.0b013e3182a77b62
10. Lezaic L, Rep S, Sever MJ, et al. (1)(8)F-Fluorocholine PET/CT for localization of hyperfunctioning parathyroid tissue in primary hyperparathyroidism: a pilot study. Eur J Nucl Med Mol Imaging. 2014;41(11):2083-2089. doi: https://doi.org/10.1007/s00259-014-2837-0
11. Michaud L, Burgess A, Huchet V, et al. Is 18F-fluorocholine-positron emission tomography/computerized tomography a new imaging tool for detecting hyperfunctioning parathyroid glands in primary or secondary hyperparathyroidism? J Clin Endocrinol Metab. 2014;99(12):4531-4536. doi: https://doi.org/10.1210/jc.2014-2821
12. Michaud L, Balogova S, Burgess A, et al. A pilot comparison of 18F-fluorocholine PET/CT, ultrasonography and 123i/99mTc-sestamibi dual-phase dual-isotope scintigraphy in the preoperative localization of hyperfunctioning parathyroid glands in primary or secondary hyperparathyroidism: influence of thyroid anomalies. Medicine (Baltimore). 2015;94(41):E1701. doi: https://doi.org/10.1097/md.0000000000001701
13. Cheung K, Wang TS, Farrokhyar F, et al. A metaanalysis of preoperative localization techniques for patients with primary hyperparathyroidism. Ann Surg Oncol. 2012;19(2):577-283. doi: https://doi.org/10.1245/s10434-011-1870-5
14. Wong KK, Fig LM, Gross MD, et al. Parathyroid adenoma localization with 99mTc-sestamibi spect/CT: a metaanalysis. Nucl Med Commun. 2015;36(4):363-375. doi: https://doi.org/10.1097/mnm.0000000000000262
15. Kunstman JW, Kirsch JD, Mahajan A, et al. Clinical review: parathyroid localization and implications for clinical management. J Clin Endocrinol Metab. 2013;98(3):902-912. doi: https://doi.org/10.1210/jc.2012-3168
16. Kluijfhout WP, Pasternak JD, Drake FT, et al. Use of pet tracers for parathyroid localization: a systematic review and metaanalysis. Langenbecks Arch Surg. 2016;401(7):925-935. doi: https://doi.org/10.1007/s00423-016-1425-0
17. Rozhinskaya L, Pigarova E, Sabanova E, et al. Diagnosis and treatment challenges of parathyroid carcinoma in a 27-year-old woman with multiple lung metastases. Endocrinol Diabetes Metab Case Rep. 2017;2017. doi: https://doi.org/10.1530/edm-16-0113
18. Demir H, Halac M, Gorur GD, et al. FDG PET/CT findings in primary hyperparathyroidism mimicking multiple bone metastases. Eur J Nucl Med Mol Imaging. 2008;35(3):686. doi: https://doi.org/10.1007/s00259-007-0653-5
19. Gahier Penhoat M, Drui D, Ansquer C, et al. Contribution of 18-FDG PET/CT to brown tumor detection in a patient with primary hyperparathyroidism. Joint Bone Spine. 2017;84(2):209-212. doi: https://doi.org/10.1016/j.jbspin.2016.06.007
20. Мокрышева Н.Г., Крупинова Ю.А, Мирная С.С. Клинические и лабораторно-инструментальные возможности пред операционной диагностики рака околощитовидных желез. // Эндокринная хирургия. — 2017. — Т. 11. — № 3. — С. 136—145. [Mokrysheva NG, Krupinova YuA, Mirnaya SS. Clinical, laboratory and instrumental methods of Pre-surgical diagnosis of the parathyroid glands cancer. Endocrine Surgery. 2017;11(3):136-145. (In Russ.)]. doi: https://doi.org/10.14341/serg20173136-145
21. Gibellini F, Smith TK. The kennedy pathway — de novo synthesis of phosphatidylethanolamine and phosphatidylcholine. Iubmb Life. 2010;62(6):414-428. doi: https://doi.org/10.1002/iub.337
22. Guma M, Sanchez-Lopez E, Lodi A, et al. Choline kinase inhibition in rheumatoid arthritis. Ann Rheum Dis. 2015;74(7):1399-1407. doi: https://doi.org/10.1136/annrheumdis-2014-2056966
23. Calabria F, Chiaravalloti A, Ciccio C, et al. PET/CT with (18)F-choline: physiological whole bio-distribution in male and female subjects and diagnostic pitfalls on 1000 prostate cancer patients: (18)F-choline PET/CT bio-distribution and pitfalls. A southern Italian experience. Nucl Med Biol. 2017;51:40-54. doi: https://doi.org/10.1016/j.nucmedbio.2017.04.004
Supplementary files
|
1. Fig. 1. The results of radiation diagnosis of patient B. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(2MB)
|
Indexing metadata ▾ |
|
2. Fig. 2. Results of radiation diagnosis of patient V. (arrows indicate pathological foci in the bones). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(2MB)
|
Indexing metadata ▾ |
|
3. Fig. 3. Microscopic structure of OSHG adenoma of patient V. and the results of immunohistochemistry. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(2MB)
|
Indexing metadata ▾ |
|
4. Fig. 4. The results of radiation diagnosis of patient A. (arrows indicate dystopic in the upper mediastinum OCH, PET / CT with 18F-PC). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(2MB)
|
Indexing metadata ▾ |
|
5. Fig. 5. The results of radiation diagnosis of patient A. (arrows indicate pathological foci in the bones, PET / CT with 18F-PF). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(2MB)
|
Indexing metadata ▾ |
|
6. Fig. 6. The microscopic structure of the adenoma of the OShZh.A patient A. and the results of immunohistochemistry. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(2MB)
|
Indexing metadata ▾ |
Review
For citations:
Mokrysheva N.G., Krupinova J.A., Dolgushin M.B., Odzharova A.A., Voronkova I.A., Voskoboynikov V.V., Kuznecov N.S. Positron emission tomography in combination with computed tomography with 18F-fluorocholine in the topical diagnosis of parathyroid tumors and secondary changes in bone tissue associated with hyperparathyroid osteodystrophy: two case studies. Problems of Endocrinology. 2018;64(5):299-305. https://doi.org/10.14341/probl9548

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).