Preview

Problems of Endocrinology

Advanced search

Molecular genetic and clinical variants MODY2 and MODY3 in children in Russia

https://doi.org/10.14341/probl201561514-25

Abstract

Aim — to research molecular genetic and clinical characteristics of diabetes mellitus MODY2 and MODY3 in children.

Material and methods. Genetic testing for GCK and HNF1α was performed in 169 patients with carbohydrate metabolism disorders, with age of diagnosis under 18. Carbohydrate metabolism disorders were interpreted as MODY. Analysis of clinical data at the presentation of carbohydrate metabolism disorder and cases follow-up was provided in 62 patients with genetic confirmed MODY2 and 18 patients with genetic confirmed MODY3.

Results. Ratio MODY2 and MODY3 was 3,4:1. Carbohydrate metabolism disorders were diagnosed earlier in MODY2 than in MODY3 — 7,8 years (4,0; 10,5) vs. 11,8 years (9,7; 13,5) (p<0,01). Degree of carbohydrate metabolism disorder was less in MODY2 — in 22,4% of patients all makers of carbohydrate metabolism disorder (HbA1c, fasting glycaemia, 120 min glycaemia) were less than diabetic range, in MODY3 all these makers were diabetics in 100% of cases. Patients with MODY2 significantly less frequently were treated with antihyperglycemic drugs. Carbohydrate metabolism disorders in one of the parents were diagnosed earlier in MODY3 — in 24 years (18,5; 35,3) vs. 32 years (27; 37) in MODY2 (p<0,05), parents were treated with antihyperglycemic drugs — in 94,4% vs. 22,2%  respectively (p<0,01).

Conclusion. This study is the largest in Russia and estimated that MODY2 is the most prevalence and has had milder presentation and less dysfunction of β-cells to compare to MODY-HNF1α.

About the Authors

Tamara Leonidovna Kuraeva
Endocrinology Research Centre; Sechenov First Moscow State Medical University
Russian Federation

MD, PhD, professor, Head of the department of the diabetes of the Paediatric Endocrinology Institute



Elena Aleksandrovna Sechko
Sechenov First Moscow State Medical University
Russian Federation
posgraduated student


Lubov' Iosifovna Zilberman
Endocrinology Research Centre; Sechenov First Moscow State Medical University
Russian Federation
MD, PhD


Olga Nikolaevna Ivanova
Endocrinology Research Centre
Russian Federation
PhD


Aleksandr Yurievich Mayorov
Endocrinology Research Centre; Sechenov First Moscow State Medical University
Russian Federation
MD, PhD


Ekaterina Olegovna Koksharova
Endocrinology Research Centre
Russian Federation
MD, postgraduated student


Valentina Aleksandrovna Peterkova
Endocrinology Research Centre; Sechenov First Moscow State Medical University
Russian Federation
MD, PhD, professor, Corresponding Fellow of Russian Academy of Sciences


Ivan Ivanovich Dedov
Endocrinology Research Centre
Russian Federation
MD, PhD, Professor, Fellow of Russian Academy of Sciences, Head of Endocrinology Research Centre


References

1. Craig ME, Hattersley A, Donaghue KC. Definition, epidemiology and classification of diabetes in children and adolescents. Pediatr Diabetes. 2009;10:3-12. doi: 10.1111/j.1399-5448.2009.00568.x.

2. Ширяева Т.Ю.,Андрианова Е.А., Сунцов Ю.И. “Динамика основных эпидемиологических показателей сахарного диабета 1-го типа у детей и подростков в Российской Федерации (2001—2011 гг.)”. //Сахарный диабет. 2013;16:3:21-29. [Shiryaeva TYu, Andrianova EA, Suntsov YuI. Type 1 diabetes mellitus in children and adolescents of russian federation: key epidemiology trends. Diabetes mellitus. 2013(3):21-29. (In Russ.).] doi: 10.14341/2072-0351-813.

3. Shields BM, Hicks S, Shepherd MH, et al. Maturity-onset diabetes of the young (mody): how many cases are we missing? Diabetologia. 2010;53(12):2504-2508. doi: 10.1007/s00125-010-1799-4.

4. Pihoker C, Gilliam LK, Ellard S, et al. Prevalence, characteristics and clinical diagnosis of maturity onset diabetes of the young due to mutations in hnf1α, hnf4a, and glucokinase: results from the search for diabetes in youth. The Journal of Clinical Endocrinology & Metabolism. 2013;98(10):4055-4062. doi: 10.1210/jc.2013-1279.

5. Irgens HU, Molnes J, Johansson BB, et al. Prevalence of monogenic diabetes in the population-based norwegian childhood diabetes registry. Diabetologia. 2013;56(7):1512-1519. doi: 10.1007/s00125-013-2916-y.

6. Fendler W, Borowiec M, Baranowska-Jazwiecka A, et al. Prevalence of monogenic diabetes amongst polish children after a nationwide genetic screening campaign. Diabetologia. 2012;55(10):2631-2635. doi: 10.1007/s00125-012-2621-2.

7. Дедов И.И., Мельниченко Г.А., Петеркова В.А., Ремизов О.В. //Ожирение. М.:МИА. 2004;456. [Dedov II, Mel’nichenko GA, Peterkova VA, Remizov OV. Obesity. Moscow: MIA. 2004;456. (In Russ.)].

8. Hager J, Blanche H, Sun F, et al. Six mutations in the glucokinase gene identified in mody by using a nonradioactive sensitive screening technique. Diabetes. 1994;43(5):730-733. doi: 10.2337/diab.43.5.730.

9. Lindner TH, Cockburn BN, Bell GI. Molecular genetics of mody in Germany. Diabetologia. 1999;42(1):121-123. doi: 10.1007/s001250051128.

10. Gragnoli C, Cockburn BN, Chiaramonte F, et al. Early-onset Type II diabetes mellitus in Italian families due to mutations in the genes encoding hepatic nuclear factor 1&#x003B1; and glucokinase. Diabetologia. 2001;44(10):1326-1329. doi: 10.1007/s001250100644.

11. Lehto M, Wipemo C, Ivarsson SA, et al. High frequency of mutations in MODY and mitochondrial genes in Scandinavian patients with familial early-onset diabetes. Diabetologia. 1999;42(9):1131-1137. doi: 10.1007/s001250051281.

12. Guazzini B, Gaffi D, Mainieri D, et al. Three novel missense mutations in the glucokinase gene (G80S; E221K; G227C) in Italian subjects with maturity‐onset diabetes of the young (MODY). Hum Mutat. 1998;12(2):136-136. doi: 10.1002/(sici)1098-1004(1998)12:2<136::aid-humu13>3.3.co; 2-m.

13. Velho G, Blanch, x000E, et al. Identification of 14 new glucokinase mutations and description of the clinical profile of 42 MODY-2 families. Diabetologia. 1997;40(2):217-224. doi: 10.1007/s001250050666.

14. Cuesta-Munoz A, Caumo A, Cerutti F, et al. High prevalence of glucokinase mutations in Italian children with MODY. Influence on glucose tolerance, first-phase insulin response, insulin sensitivity and BMI. Diabetologia. 2001;44(7):898-905. doi: 10.1007/s001250100530.

15. Osbak KK, Colclough K, Saint-Martin C, et al. Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum Mutat. 2009;30(11):1512-1526. doi: 10.1002/humu.21110.

16. Takeda J, Gidh-Jain M, Xu LZ, et al. Structure/function studies of human beta-cell glucokinase. Enzymatic properties of a sequence polymorphism, mutations associated with diabetes, and other site-directed mutants. J Biol Chem. 1993;268(20):15200-15204.

17. Ellard S, Beards F, Allen LIS, et al. A high prevalence of glucokinase mutations in gestational diabetic subjects selected by clinical criteria. Diabetologia. 2000;43(2):250-253. doi: 10.1007/s001250050038.

18. Bertini C, Maioli M, Fresu P, et al. A new missense mutation in the glucokinase gene in an Italian Mody family. Diabetologia. 1996;39(11):1413-1414.

19. Gidh-Jain M, Takeda J, Xu LZ, et al. Glucokinase mutations associated with non-insulin-dependent (type 2) diabetes mellitus have decreased enzymatic activity: implications for structure/function relationships. Proceedings of the National Academy of Sciences. 1993;90(5):1932-1936. doi: 10.1073/pnas.90.5.1932.

20. McKinney JL, Cao H, Robinson JF, et al. Spectrum of HNF1Α and GCK mutations in Canadian families with maturity-onset diabetes of the young (MODY). Clin Invest Med. 2004;27(3):135-141.

21. Barrio R, Bellanné-Chantelot C, Moreno JC, et al. Nine Novel Mutations in Maturity-Onset Diabetes of the Young (MODY) Candidate Genes in 22 Spanish Families. The Journal of Clinical Endocrinology & Metabolism. 2002;87(6):2532-2539. doi:10.1210/jcem.87.6.8530.

22. Vaxillaire M. Identification of nine novel mutations in the hepatocyte nuclear factor 1 alpha gene associated with maturity-onset diabetes of the young (MODY3). Hum Mol Genet. 1997;6(4):583-586. doi: 10.1093/hmg/6.4.583.

23. Glucksmann MA, Lehto M, Tayber O, et al. Novel Mutations and a Mutational Hotspot in the M0DY3 Gene. Diabetes. 1997;46(6):1081-1086. doi: 10.2337/diab.46.6.1081.

24. Yamada S, Tomura H, Nishigori H, et al. Identification of mutations in the hepatocyte nuclear factor-1alpha gene in Japanese subjects with early-onset NIDDM and functional analysis of the mutant proteins. Diabetes. 1999;48(3):645-648. doi: 10.2337/diabetes.48.3.645.

25. Kaisaki PJ, Menzel S, Lindner T, et al. Mutations in the Hepatocyte Nuclear Factor-1α Gene in MODY and Early-Onset NIDDM: Evidence for a Mutational Hotspot in Exon 4. Diabetes. 1997;46(3):528-535. doi: 10.2337/diab.46.3.528.

26. Yamagata K, Oda N, Kaisaki PJ, et al. Mutations in the hepatocyte nuclear factor-1α gene in maturity-onset diabetes of the young (MODY3). Nature. 1996;384(6608):455-458. doi: 10.1038/384455a0.

27. Дедов И.И., Ремизов О.В., Петеркова В.А. “Генетическая гетерогенность и клинико-метаболические аспекты сахарного диабета с аутосомно-доминантным наследованием (тип MODY) у детей и подростков”. //Журнал им. Г.Н. Сперанского. 2000;6:77-88. [Dedov II, Remizov OV, Peterkova V.A. Geneticheskaya geterogennost’ i kliniko-metabolicheskie aspekty sakharnogo diabeta s autosomno-dominantnym nasledovaniem (tip MODY) u detey i podrostkov. Zhurnal im. G.N.Speranskogo. 2000;(6):77-88. (In Russ.)].

28. Дедов И.И., Тюльпаков А.Н., Зубкова Н.А., и др. “MODY тип 2: клинические и молекулярно-генетические характеристики 13 случаев заболевания. Первое описание MODY в России”. //Проблемы эндокринологии. 2009;55:3:3-8. [Dedov II, Zubkova NA, Arbatskaya NY, et al. MODY2: Clinical and molecular genetic characteristics of 13 cases of the disease. The first description of MODY in Russia. Probl Endokrinol (Mosk). 2009;55(3):3-8. (In Russ.)]. doi: 10.14341/probl20095533-7.

29. Зубкова Н.А., Арбатская Н., Петряйкина Е.Е., и др. “Сахарный диабет типа MODY3: клиническая и молекулярно-генетическая характеристика 9 случаев заболевания”. //Проблемы эндокринологии. 2014;1:51-56. [Zubkova NA, Arbatskaya NY, Petryaikina EE, et al. Type 3 form of MODY: the clinical and molecular-genetic characteristic. Nine cases of the disease. Probl Endokrinol (Mosk). 2014;60(1):51-56. (In Russ.)]. doi: 10.14341/probl201460151-56.

30. Сечко Е.А., Кураева Т.Л., Зильберман Л.И., Иванова О.Н., Петеркова В.А. “MODY3 у детей и подростков: молекулярно-генетическое и клинико-лабораторное исследование”. //Проблемы эндокринологии. 2015;3:16-22. [Sechko EA, Kuraeva TL, Zil’berman LI, et al. MODY3 in the children and adolescents: the molecular-genetic basis and clinico-laboratory manifestations. Probl Endokrinol (Mosk). 2015;61(3):16-22. (In Russ.)]. doi: 10.14341/probl201561316-22.

31. Кураева Т.Л., Сечко Е.А., Еремина И.А., Иванова О.Н., Прокофьев С.А. “Особенности течения MODY3 у ребенка с фенотипом сахарного диабета 2-го типа”. //Сахарный диабет. 2013;2:88-93. [Kuraeva TL, Sechko EA, Eremina IA, et al. MODY3 in the child with type 2 diabetes mellitus phenotype: case report. Diabetes mellitus. 2013;16(2):88-93. (In Russ.)]. doi: 10.14341/2072-0351-3762.

32. Емельянов А.О., Созаева Л.С. “Сочетание двух моногенных заболеваний: врожденного ламеллярного ихтиоза и сахарного диабета MODY 2-го типа”. //Проблемы эндокринологии. 2013;59:4:28-32. [Emel’ianov AO, Sozaeva LS. The combination of two monogenic diseases, congenital lamellar ichthyosis and type 2 MODY diabetes mellitus. Probl Endokrinol. (Mosk). 2013;59(4):28-32. (In Russ.)]. doi: 10.14341/probl201359428-32.

33. Froguel P, Vaxillaire M, Sun F, et al. Close linkage of glucokinase locus on chromosome 7p to early-onset non-insulin-dependent diabetes mellitus. Nature. 1992;356(6365):162-164. doi: 10.1038/356162a0.

34. Jetton TL, Liang Y, Pettepher CC, et al. Analysis of upstream glucokinase promoter activity in transgenic mice and identification of glucokinase in rare neuroendocrine cells in the brain and gut. J Biol Chem. 1994;269(5):3641-3654.

35. Matschinsky FM. Regulation of Pancreatic -Cell Glucokinase: From Basics to Therapeutics. Diabetes. 2002;51:Suppl. 3):S394-S404. doi: 10.2337/diabetes.51.2007.S394.

36. Byrne MM, Sturis J, Clément K, et al. Insulin secretory abnormalities in subjects with hyperglycemia due to glucokinase mutations. J Clin Invest. 1994;93(3):1120-1130. doi: 10.1172/jci117064.

37. Pontoglio M, Barra J, Hadchouel M, et al. Hepatocyte Nuclear Factor 1 Inactivation Results in Hepatic Dysfunction, Phenylketonuria, and Renal Fanconi Syndrome. Cell. 1996;84(4):575-585. doi: 10.1016/s0092-8674(00)81033-8.

38. Shih DQ, Stoffel M. Dissecting the transcriptional network of pancreatic islets during development and differentiation. Proceedings of the National Academy of Sciences. 2001;98(25):14189-14191. doi: 10.1073/pnas.251558998.

39. Wang H. Dominant-negative suppression of HNF-1alpha function results in defective insulin gene transcription and impaired metabolism-secretion coupling in a pancreatic beta -cell line. The EMBO Journal. 1998;17(22):6701-6713. doi: 10.1093/emboj/17.22.6701.

40. Shih DQ, Screenan S, Munoz KN, et al. Loss of HNF-1 Function in Mice Leads to Abnormal Expression of Genes Involved in Pancreatic Islet Development and Metabolism. Diabetes. 2001;50(11):2472-2480. doi: 10.2337/diabetes.50.11.2472.

41. Colclough K, Bellanne-Chantelot C, Saint-Martin C, et al. Mutations in the Genes Encoding the Transcription Factors Hepatocyte Nuclear Factor 1 Alpha and 4 Alpha in Maturity-Onset Diabetes of the Young and Hyperinsulinemic Hypoglycemia. Hum Mutat. 2013;34(5):669-685. doi: 10.1002/humu.22279.

42. Owen KR. RD Lawrence Lecture 2012Assessing aetiology in diabetes: how C-peptide, CRP and fucosylation came to the party! Diabet Med. 2013;30(3):260-266. doi: 10.1111/dme.12038.

43. Harries LW. Isomers of the TCF1 gene encoding hepatocyte nuclear factor-1 alpha show differential expression in the pancreas and define the relationship between mutation position and clinical phenotype in monogenic diabetes. Hum Mol Genet. 2006;15(14):2216-2224. doi: 10.1093/hmg/ddl147.

44. Stride A, Vaxillaire M, Tuomi T, et al. The genetic abnormality in the beta cell determines the response to an oral glucose load. Diabetologia. 2014;45(3):427-435. doi: 10.1007/s00125-001-0770-9.

45. Juszczak A, Owen K. Identifying subtypes of monogenic diabetes. Diabetes Management. 2014;4(1):49-61. doi: 10.2217/dmt.13.59.

46. Lin X, Steele AM, Wensley KJ, et al. Use of HbA1c in the Identification of Patients with Hyperglycaemia Caused by a Glucokinase Mutation: Observational Case Control Studies. PLoS One. 2013;8(6):e65326. doi: 10.1371/journal.pone.0065326.

47. Chakera AJ, Spyer G, Vincent N, et al. The 0.1% of the Population With Glucokinase Monogenic Diabetes Can Be Recognized by Clinical Characteristics in Pregnancy: The Atlantic Diabetes in Pregnancy Cohort. Diabetes Care. 2014;37(5):1230-1236. doi: 10.2337/dc13-2248.

48. Bellanné-Chantelot C, Lévy DJ, Carette C, et al. Clinical Characteristics and Diagnostic Criteria of Maturity-Onset Diabetes Of The Young (MODY) due to Molecular Anomalies of theHNF1ΑGene. J Clin Endocrinol Metab. 2011;96(8):E1346-E1351. doi: 10.1210/jc.2011-0268.

49. Guenat E, Seematter G, Philippe J, et al. Counterregulatory responses to hypoglycemia in patients with glucokinase gene mutations. Diabetes Metab. 2000;26(5):377-384.

50. Stride A, Shields B, Gill-Carey O, et al. Cross-sectional and longitudinal studies suggest pharmacological treatment used in patients with glucokinase mutations does not alter glycaemia. Diabetologia. 2013;57(1):54-56. doi: 10.1007/s00125-013-3075-x.

51. Pearson ER, Starkey BJ, Powell RJ, et al. Genetic cause of hyperglycaemia and response to treatment in diabetes. The Lancet. 2003;362(9392):1275-1281. doi: 10.1016/s0140-6736(03)14571-0.

52. Shepherd M, Shields B, Ellard S, et al. A genetic diagnosis ofHNF1Αdiabetes alters treatment and improves glycaemic control in the majority of insulin-treated patients. Diabet Med. 2009;26(4):437-441. doi: 10.1111/j.1464-5491.2009.02690.x.


Supplementary files

Review

For citations:


Kuraeva T.L., Sechko E.A., Zilberman L.I., Ivanova O.N., Mayorov A.Yu., Koksharova E.O., Peterkova V.A., Dedov I.I. Molecular genetic and clinical variants MODY2 and MODY3 in children in Russia. Problems of Endocrinology. 2015;61(5):14-25. https://doi.org/10.14341/probl201561514-25

Views: 1143


ISSN 0375-9660 (Print)
ISSN 2308-1430 (Online)